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mathematical and physical papers.

I I*rv >rja the Cambridge and Lublin Mathematical Journal
,
Yol. hi. p. ,121,

March, 1848.]

Notes on Hydrodynamics*.

HI.—On the Dynamical Equations.

in' reducing to calculation the motion of a system of rigid

bodies* or of material points, there are two sorts of equations with

which we are concerned; the one expressing the geometrical con-

tiaxioiis of the bodies or particles with one another, or with curves

r#r isurfa^ces external to the system, the other expressing the rela-

tionss I><3tween the changes of motion which take place in the system

fitifl Che forces producing such changes. The equations belonging

to these two classes may be called respectively the geometrical, and

thm dynamical equations. Precisely the same remarks apply to

iiic* motion of fluids. The geometrical equations which occur in

** THe series of “notes on Hydrodynamics ” which are printed in Yols. n., iii.

anti iv. of the Cambridge and Dublin Mathematical Journal
,
were written by agree-

i>atween Sir William Thomson and myself mainly for the use of Students. As

imr mm my own share in the series is concerned, there is little contained in the
** r# -which may not he found elsewhere. IActing however upon the general

of xny friends, I have included my share of the series in the present reprint.

It be convenient to give here the references to the whole series.

3U On the Equation of Continuity (Thomson), Vol. ir. p. 282.

I f» On the Equation of the Bounding Surface (Thomson), Yol. in. p. 80.

M.M7L (Stokes) as above.

IV. ^Demonstration of a Fundamental Theorem (Stokes), Yol. nx. p. 209.

On the Vis Viva of a Liquid in motion (Thomson), Vol. iv. p. 90.

VI. On Warns (Stokes), Yol. rv. p. 219.

«. XI. 7



2 NOTES ON HYDRODYNAMICS.

Hydrodynamics have been already considered by Professor Thom-
son, in Notes I. and II. The object of the present Note is to form

the dynamical equations.

The fundamental hypothesis of Hydrostatics is, that the mutual

pressure of two contiguous portions of a fluid, separated by an

imaginary plane, is normal to the surface of separation. This

hypothesis forms in fact the mathematical definition of a fluid.

The equality of pressure in all directions is in reality not an inde-

pendent hypothesis, hut a necessary consequence of the former.

A proof of this may be seen at the commencement of Prof. Miller’s

Hydrostatics. The truth of our fundamental hypothesis, or at

least its extreme nearness to the truth, is fully established by

experiment. Some of the nicest processes in Physics depend upon
it

;
for example, the determination of specific gravities, the use of

the level, the determination of the zenith by reflection from the

surface of mercury.

The same hypothesis is usually made in Hydrodynamics. If it

be assumed, the equality of pressure in all directions will follow as

a necessary consequence. This may be proved nearly as before,

the only difference being that now we have to take into account,

along with the impressed forces, forces equal and opposite to the

effective forces. The verification of our hypothesis is however

much more difficult in the case of motion, partly on account of the

mathematical difficulties of the subject, partly because the experi-

ments do not usually admit of great accuracy. Still, theory and

experiment have been in certain cases sufficiently compared to

shew that our hypothesis may be employed with very little error

in many important instances. There are however many pheno-

mena which point out the existence of a tangential force in fluids

in motion, analogous in some respects to friction in the case of

solids, hut differing from it in this respect, that whereas in solids

friction is exerted at the surface, and between points which move

relatively to each other with a finite velocity, in fluids friction is

exerted throughout the mass, where the velocity varies continu-

ously from one point to another. Of course it is the same thing

to say that in such cases there is a tangential force along with a

normal pressure, as to say that the mutual pressure of two adjacent

elements of a fluid is no longer normal to their common surface.



ON THE DYNAMICAL EQUATIONS. 3

The subsidence of the motion in a cup of tea which has been

stirred may be mentioned as a familiar instance of friction, or,

which is the same, of a deviation from the law of normal pressure
;

and the absolute regularity of the surface when it comes to rest,

whatever may have been the nature of the previous disturbance,

may be considered as a proof that all tangential force vanishes

when the motion ceases.

It does not fall in with the object of this Note to enter into the

theory of the friction of fluids in motion*, and accordingly the

hypothesis of normal pressure will be adopted. The usual nota-

tion will be employed, as in the preceding Notes. Consider the

elementary parallelepiped of fluid comprised between planes parallel

to the coordinate planes and passing through the points whose co-

ordinates are x
, y, z,

and x -f dx
, y + dy

,
z + dz. Let X, Y, Z be

the accelerating forces acting on the fluid at the point (x, y, z)

;

then, p and X being ultimately constant throughout the element,

the moving force parallel to x arising from the accelerating forces

which act on the element will be ultimately pX dx dy dz. The

difference between the pressures, referred to a unit of surface, at

opposite points of the faces dy dz is ultimately dp/dx . dx
,
acting in

the direction of x negative, and therefore the difference of the total

pressures on these faces is ultimately dp/dx . dx dy dz

;

and the

pressures on the other faces act in a direction perpendicular to the

axis of x. The effective moving force parallel to x is ultimately

p . D2xJDf . dx dy dz, where, in order to prevent confusion, D is

used to denote differentiation when the independent variables are

supposed to be t, and three parameters which distinguish one

particle of the fluid from another, as for instance the initial coordi-

nates of the particle, while d is reserved to denote differentiation

when the independent variables are x, y,
z,t. We have therefore,

ultimately,

P dx dy dz = (pX --J^jdxdy dz,

* The reader who feels an interest in the subject may consult a memoir by

Navier, MSmoires de VAcademic, tom. vi. p. 8B9 ; another by Poisson, Journal de

Vttcolc PolytecJmique , Cahier xx. p. 189 ; an abstract of a memoir by M. de Saint-

Venant, Comptes Eendus, tom. xvn. (Nov. 1840) p. 1240; and a paper in the Cam-
bridge Philosophical Transactions, Yol. vur. p. 287. [Ante, Yol. i. p. 75.]

1—2



4 NOTES ON HYDRODYNAMICS.

i

with similar equations for y and Dividing by p dx dy dz, trans-

posing, and taking the limit, we get

1 dyp_ IPx 1 dp -rr m
p dx Dtf

1

p dy Dt ’ pdz Dt ^

These are the dynamical equations which must be satisfied at

•every point in the interior of the fluid mass
;

* but they are not at

present in a convenient shape, inasmuch as they contain differen-

tial coefficients taken on two different suppositions. It will be

convenient to express them in terms of differential coefficients

taken on the second supposition, that is, that x, y,
t are the

independent variables. Now Dx/Dt=u,
and on the second suppo-

sition u is a function of t, x, y, z
}
each of which is a function of t

on the first supposition. We have, therefore, by Differential Cal-

culus,

Du D2x _ du duDx du Dy duDz
~Dt °rW ^di^dx^i^dyDt^dzDt’

or, since by the definitions of u> v, w
,

Dx Dy Dz
m~ U)

Dt
~~ v

’ Di~ W>

we have
DPx

Dt~‘

du du du du

Tt
+U

di
+V

dy
+ W

Tz’

with similar equations for y and z.

Substituting in (1), we have

Idp ^ y^du du _ du _ du m

p~dx~~ dt
U
dx

V
dy

W
dz

1 dp Tr dv dv dv dv

p dy dt dx dy dz

1 dp „ dw dw dw dw

p dz dt
U
dx

V
dy

W
dz ,

which is the usual form of the equations.

(2),

The equations (1) or (2), which are physically considered the

same, determine completely, so far as Dynamics alone are concerned,

the motion of each particle of the fluid. Hence any other purely

dynamical equation which we might set down would be identically

satisfied by (1) or (2). Thus, if we were to consider the fluid

. i



ON THE DYNAMICAL EQUATIONS.

which at the time t is contained within a closed surface and set,

down the last three equations of equilibrium of a rigid body be-

tween the pressures exerted on $, the moving forces duo to the

accelerating forces acting on the contained fluid, and the effective

moving forces reversed, we should not thereby obtain any new

equation. The surface 8 may be either finite or infinitesimal, an,

for example, the surface of the elementary parallelepiped with

which we started. Thus we should fall into error if wo were to

set down these three equations for the parallelepiped, and think

that we had thereby obtained three new independent equations.

If the fluid considered be homogeneous aryl incompressible, p

is a constant. If it be heterogeneous and incompressible, p is a

function of x
, y, z, t, and we have the additional equation Dp/ IH 0,

or

* +»*+,*+«*_ 0 .

dA dx dy dz
(3),

which expresses the fact of the incompressibility. If the fluid be

elastic and homogeneous, and at the same temperature 0 through-

out, and if moreover the change of temperature due to con-

densation and rarefaction be neglected, we shall have

p = kp (1 4- aO) *.(4),

where k is a given constant, depending on the nature of the gas,

and a a known constant which is the same for all gases [nearly].

The numerical value of a, as determined by experiment, is
#

O03CKJ,

6 being supposed to refer to the centigrade thermometer.

If the condensations and rarefactions of the fluid be rapid, w©
may without inconsistency take account of the increase of tempe-

rature produced by compression, while we neglect the communica-

tion of heat from one part of the mass to another. The only

important problem coming under this class is that of sound. If wo
suppose the changes in pressure and density small, and neglect the

squares of small quantities, we have, putting pl% p t
for the values

of p, p in equilibrium,

P =
(5 ),

Pi Pi

K being a constant which, as is well known, expresses the ratio of

the specific heat of the gas considered under a constant pressure
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to its specific heat when the volume is constant. We are not,

however, obliged to consider specific heat at all; but we may if we

please regard K merely as the value of d log p/d log p for p = p t ,

p being that function of p which it is in the case of a mass of air

suddenly compressed or dilated. In whichever point of view we

regard K
,
the observation of the velocity of sound forms the best

mode of determining its numerical value.

It will be observed that in the proof given of equations (1) it

has been supposed that the pressure exerted by the fluid outside

the parallelepiped was exerted wholly on the fluid forming the

parallelepiped, and not partly on this portion of fluid and partly

on the fluid at the other side of the parallelepiped. Now, the

pressure arising directly from molecular forces, this imposes a re-

striction on the diminution of the parallelepiped, namely that its

edges shall not become less than the radius of the sphere of activity

of the molecular forces. Consequently we cannot, mathematically

speaking, suppose the parallelepiped to be indefinitely diminished.

It is known, however, that the molecular forces are insensible at

sensible distances, so that we may suppose the parallelepiped to

become so small that the values of the forces, &c., for any point of

it, do not sensibly differ from their values for one of the corners,

and that all summations with respect to such elements may be
replaced without sensible error by integrations

;
so that the values

of the several unknown quantities obtained from pur equations by
differentiation, integration, &c. are sensibly correct, so far as this

cause of error is concerned; and that is all that we can ever attain

to in the mathematical expression of physical laws. The same
remarks apply as to the bearing on our reasoning of the supposition

of the existence of ultimate molecules, a question into which we
are not in the least called upon to enter.

There remains yet to be considered what may be called the
dynamical equation of the hounding surface.

Consider, first, the case of a fluid in contact with the surface of

a solid, which may be either at rest or in motion. Let P be a
point in the surface, about which the curvature is not infinitely

great, co an element of the surface about P, PF a normal at P,
directed into the fluid, and let PF= A. Through F draw a plane
A perpendicular to PiV, and project w on this plane by a circum-

scribing cylindrical surface. Suppose A greater than the radius r
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of tie sphere of activity of the molecular forces, and l*d<e\v

.enough to allow tie plane A not to cut the perimeter of

the reason already mentioned r will he neglected, aiul tl*cr**t»*n 11

restriction imposed on h on the first account. Let TI Li t I*
1 * '

sure sustained by the solid, referred to a unit of surface*, 1 1 Jmwti*-.

the value belonging to the point P, and let p be the pr« *hh\ % * *

the fluid at N. Consider tie element of fluid comprised b«*t *% ** * n

a), its projection on the plane A, and the projecting cylindrical

face. The forces acting on this element are, first, tin* Pr<#H
^
,ir '*

tie fluid on tie base, -which acts in the direction 2sLT* ntui *H ’

mately equal to pa
;
secondly, the pressure of the 1

ultimately acts alongPiV and is equal to IIco; thirdly, the pri'H *$it^

of the fluid on the cylindrical surface, which acts ovorywh«*rr* *** n

direction perpendicular to PJT; and, lastly, the moving h «•*«.*# *ln^

to the accelerating forces acting on the fluid
;
and this wind** *

tern of forces is in equilibrium with forces equal and
the effective moving forces. Now the moving force** dun 1

accelerating forces acting on the fluid, and the effective »!ir*ving

forces, are both of the order o>h, and therefore, whatever tuny tie

their directions, vanish in the limit compared with the* furr** p
if we suppose, as we may, that h vanishes in the limit* 1

1

get from the equation of the forces parallel to jPJV*, pumittg t*$ ill**

limit,

2> = n . ..(«).

p being the limiting value of p, or the result obtained by «iiWf i*

tuting in the general expression for the pressure the coord itinfom *#f

the point P for oo, y, z.

It should be observed that, in proving this equation, tint fairer

on which capillary phenomena depend have not boon tnkem
account. And in fact it is only when such forces are
that equation (6) is true*

In the case of a liquid with a free surface, or more gtmernIJf m
the case of two fluids in contact, it may be proved, just iih

that equation (6) holds good at any point in the surface*, p f If Im^mg
the results obtained on substituting the coordinates of tht* %m*mi
consxdered for the general coordinates in the general Qxpn&*j«t4 »t*jt

for the pressure in the two fluids respectively. In this mm
before, capillary attraction is supposed to be neglected.



[Prom the Philosophical Magazine, Vol. xxxn. p. 343, May, 1848.]

On the Constitution of the Luminiferous Ether.

The phenomenon of aberration may be reconciled with the

undulatory theory of light, as I have already shown (Phil. Mag.,

Vol. xxvii. p. 9*), without making the violent supposition that the

ether passes freely through the earth in its motion round the sun,

but supposing,- on the contrary, that the ether close to the surface

of the earth is at rest relatively to the earth. This explanation

requires us to suppose the motion of the ether to be such, that the

expression usually denoted by udx t- vdy + wdz is an exact diffe-

rential. It becomes an interesting question to inquire on what

physical properties of the ether this sort of motion can be explained.

Is it sufficient to consider the ether as an ordinary fluid, or must

we have recourse to some property which does not exist in ordinary

fluids, or, to speak more correctly, the existence of which has not

been made manifest in such fluids by any phenomenon hitherto

observed? I have already attempted to offer an ' explanation on

the latter supposition (Phil. Mag., Vol. xxix. p. 6f).

In my paper last referred to, I have expressed my belief that

the motion for which udx + &c. is an exact differential, which

would take place if the ether were like an ordinary fluid, would be

unstable ;
I now propose to prove the same mathematically, though

by an indirect method.

Even if we supposed light to arise from vibrations of the ether

accompanied by condensations and rarefactions, analogous to the

vibrations of the air in the case of sound, since such vibrations

would be propagated with about 10,000 times thevelocityofthe earth,

* Ante, Vol. i, p. 134. t Ante, Vol. r. p. 153.
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we might without sensible error neglect the condensation of the

ether in the motion which we are considering. Suppose, then, a

sphere to be moving uniformly in a homogeneous incompressible

fluid, the motion being such that the square of the velocity may
be neglected. There are many obvious phenomena which clearly

point out the existence of a tangential force in fluids in motion,

analogous in many respects to friction in the case of solids. When
this force is taken into account, the equations of motions become

(<Cambridge Philosophical Transactions, Yol. vm. p. 297*)

dp
__

du fd\ d?u dht\

dx P dt
+ ^ Kdx* dy* dz*)

(i).

with similar equations for y and z . In these equations the square

of the velocity is omitted, according to the supposition made above,

p is considered constant, and the fluid is supposed not to be acted

on by external forces. We have also the equation of continuity

du dv dm _ «

dx
+
dy + dz

(2),

and* the conditions, (1) that the fluid at the surface of the sphere

shall be at rest relatively to the surface, (2) that the velocity shall

vanish at an infinite distance.

For my present purpose it is not requisite that the equations

such as (1) should be known to be true experimentally
;

if they

were even known to be false they would be sufficient, for they may
be conceived to be true without mathematical absurdity. My
argument is this. If the motion for which udx + ... is an exact

differential, which would be obtained from the common equations,

were stable, the motion which would be obtained from equations

(1) would approach indefinitely, as p vanished, to one for which

udx *f ... was an exact differential, and therefore, for anything

proved to the contrary, the latter motion might be stable; but if,

on the contrary, the motion obtained from (1) should turn out

totally different from one for which udx+ ... is an exact differen-

tial, the latter kind of motion must necessarily be unstable.

Conceive a velocity equal and opposite to that of the sphere

impressed both on the sphere and on the fluid. It is easy to prove

* Ante
,
Yol. x. p. 98.



10 ON THE CONSTITUTION OF THE LUMINIFEROUS ETHER.

that ... will or will not be an exact differential after the

velocity is impressed, according as it was or was not such before.

The sphere is thus reduced to rest, and the problem becomes one

of steady motion. The solution which I am about to give is

extracted from some researches in which I am engaged, but which

are not at present published. It would occupy far too much room

in this Magazine to enter into the mode of obtaining the solution :

but this is not necessary
;

for it will probably be allowed that

there is but one solution of the equations in the case proposed, as

indeed readily follows from physical considerations, so that it will

be sufficient to give the result, which may be verified by differen-

tiation.

Let the centre of the sphere be taken for origin
;

let the direc-

tion of the real motion of the sphere make with the axes angles

whose cosines are l> m, %, and let v be the real velocity of the

sphere; so that when the problem is reduced to one of steady

motion, the^ fluid at a distance from the sphere is moving in the

opposite direction with a velocity v. Let a be the sphere's radius

:

then we have to satisfy the general equations (1) and (2) with the

particular conditions

^ = 0, v=Q, w=0, whenr = & (8);

u=—lv, v = — mv, w~ — nv, when r= oo (4),

r being the distance of the point considered from the centre of the

sphere. It will be found that all the equations are satisfied by
the following values,

3 ap=U + ^fj,vp{lx+my+ nz),

u =
\
v
(? ~ ?) ® (

loo+my

+

nz)

+

lv
(17 +\-r - *)

.

with symmetrical expressions for v and w. II is here an arbitrary

constant, which evidently expresses the value of p at an infinite

distance. Now the motion defined by the above expressions does

not tend, as p vanishes, to become one for which &<& + ... is an

exact differential, and therefore the motion which would be

obtained by supposing udx + ... an exact differential, and applying

to the ether the common equations of hydrodynamics, would be
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unstable. The proof supposes the motion in question to be steady ;

but such it may be proved to be, if the velocity of the earth bo

regarded as uniform, and an equal and opposite velocity be con-

ceived impressed both on the earth and on the ether. Hence the

stars would appear to be displaced in a manner different from that

expressed by the well-known law of aberration.

When, however, we take account of a tangential force in the

ether, depending, not on relative velocities, or at least not on rela-

tive velocities only, but on relative displacements, it then becomes

possible, as I have shewn (Phil. Mag., Vol. xxix. p. C), to explain

not only the perfect regularity of the motion, but also the circum-

stance that udx -f ... is an exact differential, at least for the ether

which occupies free space
;

for as regards the motion of the other

which penetrates the air, whether about the limits of the atmo-

sphere or elsewhere, I do not think it prudent, in the present

state of our knowledge, to enter into speculation
;
I prefer resting

in the supposition that udx -f ... is an exact differential. Accord-

ing to this explanation, any nascent irregularity of motion, any

nascent deviation from the motion for which udx 4* ... is an exact

differential, is carried off into space, with the velocity of light, by

transversal vibrations, which as such are identical in their physical

nature with light, but which do not necessarily produce the sensa-

tion of light, either because they are too feeble, as they probably

would be, or because their lengths of wave, if the vibrations take

place in regular series, fall beyond the limits of the visible spec-

trum, or because they are discontinuous, and the sensation of light

may require the succession of a number of similar vibrations. It

is certainly curious that the astronomical phenomenon of the

aberration of light should afford an argument in support of the

theory of transversal vibrations.

Undoubtedly it does violence to the ideas that we should have
been likely to form d priori of the nature of the ether, to assert

that it must be regarded as an elastic solid in treating of the

vibrations of light. When, however, we consider the wonderful
simplicity of the explanations of the phenomena of polarization

when we adopt the theory of transversal vibrations, and the diffi-

culty, which to me* at least appears quite insurmountable, of

explaining these phenomena by any vibrations due to the conden-
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sation and rarefaction of an elastic fluid such as air, it seems

reasonable to suspend our judgement, and be content to learn from

phenomena the existence of forces which we should not beforehand

have expected. The explanations which I had in view are those

which belong to the geometrical part of the theory; but the

deduction, from dynamical calculations, of the laws which in the

geometrical theory take the place of observed facts must not be

overlooked, although here the evidence is of a much more compli-

cated character.

The following illustration is advanced, not so much as explain-

ing the real nature of the ether, as for the sake of offering a

plausible mode of conceiving how the apparently opposite proper-

ties of solidity and fluidity which we must attribute to the ether

may be reconciled.

Suppose a small quantity of glue dissolved in a little water, so

as to form a stiff jelly. This jelly forms in fact an elastic solid : it

may be constrained, and it will resist constraint, and return to its

original form when the constraining force is removed, by virtue of

its elasticity
;
but if we constrain it too far it will break. Suppose

now the quantity of water in which the glue is dissolved to be

doubled, trebled, and so on, till at last we have a pint or a quart

of glue water. The jelly will thus become thinner and thinner,

and the amount of constraining force which it can bear without

being dislocated will become less and less. At last it will become

so far fluid as to mend itself again as soon as it is dislocated. Yet

there seems hardly sufficient reason for supposing that at a certain

stage of the dilution the tangential force whereby it resists con-

straint ceases ail of a sudden. In order that the medium should

not be dislocated, and therefore should have to be treated as an

elastic solid, it is only necessary that the amount of constraint

should be very small. The medium would however be what we
should call a fluid, as regards the motion of solid bodies through it.

The velocity of propagation of normal vibrations in our medium
would be nearly the same as that of sound in water

;
the velocity

of propagation of transversal vibrations, depending as it does on

the tangential elasticity, would become very small. Conceive now
a medium having similar properties, but incomparably rarer than

air, and we have a medium such as we may conceive the ether to
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be, a fluid as regards the motion of the earth and planets through

it, an elastic solid as regards the small vibrations which constitute

light. Perhaps we should get nearer to the true nature of the

ether by conceiving a medium hearing the same relation to air

that thin jelly or glue w^ter hears to pure water. The sluggish

transversal vibrations of our thin jelly are, in the case of the ether,

replaced by vibrations propagated with a velocity of nearly 200,000

miles in a second : we should expect, <1 priori, the velocity of

propagation of normal vibrations to be incomparably greater. This

is just the conclusion to which wc are led quite independently,

from dynamical principles of the greatest generality, combined

with the observed phenomena of optics

* See the introduction to an admirable memoir by Green, “On the laws of the

Reflexion and Refraction of Light at the common surface of two non-crysfcollizod

media.” Cambridge Philosophical Transactions, Vol. vn. p. 1*



[From the Philosophical Transactions for 1848, p. 227.]

On the Theory of Certain Bands seen in the Spectrum.

[Read May 25, 1848.]

Some months ago Professor Powell communicated to me an

account of a new case of interference which he had discovered

in the course of some experiments on a fluid prism, requesting

at the same timejny consideration of the theory. As the pheno-

menon is fully described in Professor Powell's memoir, and is

briefly noticed in Art. 1 of this paper, it is unnecessary here to

allude to it. It struck me that the theory of the. phenomenon

was almost identical with that of the bands seen when a spectrum

is viewed by an eye, half the pupil of which is covered by a plate

of glass or mica. The latter phenomenon has formed the subject

of numerous experiments by Sir David Brewster, who has dis-

covered a very remarkable polarity, or apparent polarity, in the

bands. The theory of these bands has been considered by the

Astronomer Royal in two memoirs “ On the Theoretical Expla-

nation of an apparent new Polarity of Light/' printed in the

Philosophical Transactions for 1840 (Part II.) and 1841 (Part I.).

In the latter of these Mr Airy has considered the case in which

the spectrum is viewed in focus, which is the most interesting

case, as being that in which the bands are best seen, and which is

likewise far simpler than the case in which the spectrum is viewed

out of focus. Indeed, from the mode of approximation adopted,

the former memoir can hardly be considered to belong to the

bands which formed the subject of Sir David Brewster's experi-

ments, although the memoir no doubt contains the theory of a

possible system of bands. On going over the theory of the bands

seen when the spectrum is viewed in focus, after the receipt of
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Professor Powell’s letter, I was led to perceive that the intensity

of the light could be expressed in finite terms. This saves the

trouble of Mr Airy’s quadratures, and allows the results to be

discussed with great facility. The law, too, of the variation of

the intensity with the thickness of the plate is very remarkable,

on account of its discontinuity. These reasons have induced me
to lay my investigation before the Royal Society, even though

the remarkable polarity of the bands has been already explained

by the Astronomer Royal. The observation of these bands seems

likely to become of great importance in the determination of the

refractive indices, and more especially the laws of dispersion, of

minerals and other substances which cannot be formed into prisms

which would exhibit the fixed lines of the spectrum.

Section I.

Explanation of the formation of the bands on the imperfect theory

of Interferences. Mode of calculating the number of bands

seen in a given part of the spectrum.

1. The phenomenon of which it is the principal object of the

following paper to investigate the theory, is briefly as follows.

Light introduced into a room through a horizontal slit is allowed

to pass through a hollow glass prism containing fluid, with its

refracting edge horizontal, and the spectrum is viewed through

a small telescope with its object-glass close to the prism. On
inserting into the fluid a transparent plate with its lower edge

horizontal, the spectrum is seen traversed from end to end by

very numerous dark bands, which are parallel to the fixed lines.

Under favourable circumstances the dark bands are intensely

black
;
but in certain cases, to be considered presently, no bands

whatsoever are seen. When the plate is cut from a doubly re-

fracting crystal, there are in general two systems of bands seen

together
;
and when the light is analysed each system disappears

in turn at every quarter revolution of the analyser.

% It is not difficult to see that the theory of these bands

must be almost identical with that of the bands described by

Sir David Brewster in the Report of the Seventh Meeting of the
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British Association
,
and elsewhere, and explained by Mr Airy in

the first part of the Philosophical Transactions for 1841. To

mate this apparent, conceive an eye to view a spectrum through

a small glass vessel with parallel faces filled with fluid. The

vessel would not alter the appearance of the spectrum. Wow con-

ceive a transparent plate bounded by parallel surfaces inserted

into the fluid, the plane of the plate being perpendicular to the

axis of the eye, and its edge parallel to the fixed lines of the

spectrum, and opposite to the centre of the pupil. Then wo

should have bands of the same nature as those described by Sir

David Brewster, the only difference being that in the present case

the retardation on which the existence of the bands depends is

the difference of the retardations due to the plate itself, and

to a plate of equal thickness of the fluid, instead of the ab-

solute retardation of the plate, or more strictly, the difference

of retardations of the solid plate and of a plate of equal thick-

ness of air, contained between the produced parts of the bound-

ing planes of the solid plate. In Professor Powell’s experiment

the fluid fills the double office of the fluid in the glass vessel and

of the prism producing the spectrum in the imaginary experiment

just described.

It might be expected that the remarkable polarity discovered

by Sir David Brewster in the bands which he has described, would

also be exhibited with Professor Powell’s apparatus. This anticipa-

tion is confirmed by experiment. With the arrangement of the

apparatus already mentioned, it was found that with certain

pairs of media, one being the fluid and the other the retarding

plate, no bands were visible. These media were made to exhibit

bands by using fluid enough to cover the plate to a certain

depth, and stopping by a screen the light which would otherwise

have passed through the thin end of the prism underneath the

plate.

3. Although the explanation of the polarity of the bands

depends on diffraction, it may be well to account for their for-

mation on the imperfect theory of interferences, in which it is

supposed that light consists of rays which follow the courses as-

signed to them by geometrical optics. It will thus readily appear

that the number of bands formed with a given plate and fluid,

and in a given part of the spectrum, has nothing to do with the
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form or magnitude of the aperture, whatever it be, which limits

the pencil that ultimately falls on the retina. Moreover, it seems

desirable to exhibit in its simplest shape the mode of calculating

the number of bands seen in any given case, more especially as

these calculations seem likely to be of importance in the deter-

mination of refractive indices.

4. Before the insertion of the plate, the wave of light be-

longing to a particular colour, and to a particular point of the slit,

or at least a certain portion of it limited by the boundaries ot

the fluid, after being refracted at the two surfaces of the prism

enters the object-glass with an unbroken front. The front is here

called unbroken, because the modification which the wave suffers

at its edges is not contemplated. According to geometrical optics,

the light after entering the object-glass is brought to a point near

the principal focus, spherical aberration being neglected
;
accord-

ing to the undulatory theory, it forms a small, but slightly dif-

fused image of the point from which it came. The succession of

these images due to the several points of the slit forms the image
of the slit for the colour considered, and the succession of coloured

images forms the spectrum, the waves for the different colours

covering almost exactly the same portion of the object-glass, but
differing from one another in direction.

Apart from all theory, it is certain that the image of a point or

line of homogeneous light seen with a small aperture is diffused.

As the aperture is gradually widened the extent of diffusion de-
creases continuously, and at last becomes insensible. The perfect

continuity, however, of the phenomenon shows that the true
and complete explanation, whatever it may be, of the narrow
image seen with a broad aperture, ought also to explain the dif-

fused image seen with a narrow aperture. The undulatory theory
explains perfectly both the one and the other, and even pre-
dicts the distribution of the illumination in the image seen
with an aperture of given form, which is what no other theory
has ever attempted.

As an instance of the effect of diffusion in an image, may
be mentioned the observed fact that the definition of a tele-

scope is impaired by contracting the aperture. With a mode-
rate aperture, however, the diffusion is so slight as not to prevent

S. II. 2
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fine objects, such as the fixed lines of the spectrum, from being

well seen.

For the present, however, let us suppose the light entering

the telescope to consist of rays which are brought accurately to a

focus, but which nevertheless interfere. When the plate is in-

serted into the fluid the front of a wave entering the object-glass

will no longer be unbroken, but will present as it were a fault,
in

consequence of the retardation produced by the plate. Let R be

this retardation measured by actual length in air, p the retardation

measured by phase, M the retardation measured by the number of

waves’ lengths, so that

P
=~ M, M= \r;

then when M is an odd multiple of the vibrations produced by

the two streams, when brought to the same focus, will oppose

each other, and there will be a minimum of illumination; but

when M is an even multiple of \ the two streams will combine,

and the illumination will be a maximum. Now M changes in

passing from one colour to another in consequence of the varia-

tions both of R and of X
;
and since the different colours occupy

different angular positions in the field of view, the spectrum will

be seen traversed by dark and bright bands. It is nearly thus

that Mr Talbot has explained the bands seen when a spectrum

is viewed through a hole in a card which is half covered with a

plate of glass or mica, with its edge parallel to the fixed lines

of the spectrum. Mr Talbot however does not appear to have

noticed the polarity of the bands.

Let h
,
h be the breadths of the interfering streams; then

we may take

h

.

sin— vt, k sin /— vt — p)

to represent the vibrations produced at the focus by the two
streams respectively, which gives for the intensity I9

T= (h-j-k cos pf + (Jc sin p)
2 = h

2
-f If + 2hk cos p ... (1),

which varies between the limits Qi - k)
2 and (A 4- k)*.

5. Although the preceding explanation is imperfect, for the
reason already mentioned, and does not account for the polarity,
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it is evident that if bands are formed at all in this way, the

number seen in a given part of the spectrum will be determined

correctly by the imperfect theory; for everything will recur, so

far as interference is concerned, when M is decreased or increased

by 1, and not before. This points out an easy mode of deter-

mining the number of bands seen in a given part of the spectrum.

Tor the sake of avoiding a multiplicity of cases, let an accelera-

tion be reckoned as a negative retardation, and suppose R positive

when the stream which passes nearer to the edge of the prism is

retarded relatively to the other. From the known refractive

indices of the plate and fluid, and from the circumstances of the

experiment, calculate the values of R for each of the fixed lines

£, G II of the spectrum, or for any of them that may be

selected, and thence the values of My
by dividing by the known

values of A. Set down the results with their proper signs opposite

to the letters B
,
G ... denoting the rays to which they respectively

refer, and then form a table of differences by subtracting the

value of M for B from the value for G
}
the value for G from the

value for D, and so on. Let N be the number found in the table

of differences corresponding to any interval, as for example from

F to G
;
then the numerical value of N

y
that is to say, N or —

according as N is positive or negative, gives the number of bands

seen between F and G. For anything that appears from the

imperfect theory of the bands given in the preceding article, it

would seem that the sign of N was of no consequence. It will

presently be seen, however, that the sign is of great importance

:

it will be found in fact that the sign 4- indicates that the second

arrangement mentioned in Art. 2 must be employed; that is to

say, the plate must be made to intercept light from the thin end

of the prism, while the sign — indicates that the first arrange-

ment is required. It is hardly necessary to remark that, if N
should be fractional, we must, instead of the number of bands,

speak of the number of band-intervals and the fraction of an

interval.

Although the number of bands depends on nothing but the

values of N
y
the values of M are not without physical interest.

For M expresses, as we have seen, the number of waves’ lengths

whereby one of the interfering streams is before or behind the

other. Mr Airy speaks of the formation of rings with the light of

2—2
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a spirit-lamp when the retardation of one of the interfering

streams is as much as fifty or sixty waves’ lengths. But in some

of Professor Powell’s experiments, bands were seen which must

have been produced by retardations of several hundred waves’

lengths. This exalts our ideas of the regularity which must be

attributed to the undulations.

6. It appears then that the calculation of the number of

bands is reduced to that of the retardation jR. As the calculation

of R is frequently required in physical optics, it will not be neces-

sary to enter into much detail on this point. The mode of per-

forming the calculation, according to the circumstances of the

experiment, will best be explained by a few examples.

Suppose the retarding plate to belong to an ordinary medium,

and to be placed so as to intercept light from the thin end of the

prism, and to have its plane equally inclined to the faces of the

prism. Suppose the prism turned till one of the fixed lines, as F
y

is seen at a minimum deviation
;
then the colours about F are

incident perpendicularly on the plate
; and all the colours may

without material error be supposed to be incident perpendicularly,

since the directions of the different colours are only separated by

the dispersion accompanying the first refraction into the fluid, and

near the normal a small change in the angle of incidence produces

only . a very small change in the retardation. The dispersion

accompanying the first refraction into the fluid has been spoken of

as if the light were refracted from air directly into the fluid, which

is allowable, since the glass sides of the hollow prism, being

bounded by parallel surfaces, may be dispensed with in the expla-

nation. Let T be the thickness of the plate, fi the refractive

index of the fluid, ft that of the plate
;
then

-B-fc'-jOZ
7
.... (2).

If the plate had been placed so as to intercept light from the

thick end of the prism, we should have had — R = Qi — fi) T

\

which would have agreed with (2) if we had supposed T negative.

For the future T will be reckoned positive when the plate inter-

cepts light from the thin end of the prism, and negative when it

intercepts light from the thick end, so that the same formulae will

apply to both of the arrangements mentioned in Art. 2.



BANDS SEEN IN THE SPECTRUM. 21

If we put fi
= 1, the formula (2) will apply to the experiment

in which a plate of glass or mica is held so as to cover half the

pupil of the eye when viewing a spectrum formed in any manner,

the plate being held perpendicularly to the axis of the eye. * The

effect of the small obliquity of incidence of some of the colours is

supposed to be neglected.

The number of bands which would be determined by means of

the formula (2) would not be absolutely exact, unless we suppose

the observation taken by receiving each fixed line in succession at

a perpendicular incidence. This may be effected in the following

manner. Suppose that we want to count the number of bands

between F and G, move the plate by turning it round a horizontal

axis till the bands about F are seen stationary
;
then begin to

count from F, and before stopping at G incline the plate a little

till the bands about G are seen stationary, estimating the fractions

of an interval at F and G, if the bands are not too close. The

result will be strictly the number given by the formula (2). The

difference, however, between this result and that which would be

obtained by keeping the plate fixed would be barely sensible. If

the latter mode of observation should be thought easier or more

accurate, the exact formula which would replace (2) would be

easily obtained.

7. Suppose now the nearer face of the retarding plate made

to rest on the nearer inner face of the hollow prism, and suppose

one of the fixed lines, as F, to be viewed at a minimum deviation.

Let
<f), <f>

be the angles of incidence and refraction at the first

surface of the fluid, i, i' those at the surface of the plate, % the

angle of the prism. Since the deviation ofF is a minimum, the

angle of refraction
<f>'F for F is equal to e, and the angle of inci-

dence cf> is given by sin
<f>
= jiF sin and

<f>
is the angle of inci-

dence for all the colours, the incident light being supposed white.

The angle of refraction <£' for any fixed line is given by the equa-

tion sin
<f>'
= llfi. sin

<f>
= . sin e ; then i « 2e —

<f> t
and i is

known from the equation

fj! sini' sin* ........................ (3).

The retardation is given by either of the formulae

B-^T“iCj-'O;
sir^

R = T(jjI cos i' — (a cos t)

w,

(5).
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These formulas might he deduced from that given in A

Tract, modified so as to suit the case in which the plate is

mersed in a fluid
;
but either of them may be immediately pi

independently by referring everything to the wave’s front anc

the ray.

By multiplying and dividing the second side of (5) by -

and employing (3), we get

It = T sec i . (/jb — ft) — sec % versin (i — i) (

When the refractive indices of the plate and fluid are n
equal, the last term in this equation may be considered insen

so that it is not necessary to calculate % at all.

8. The formulas (2), (4), (5), (6) are of course applicable i

ordinary ray of a plate cut from a uniaxal crystal. If the pla

cut in a direction parallel to the axis, and if moreover the

edge be parallel to the axis, so that the axis is parallel t

refracting edge of the prism, the formulae will apply to both

If Po* H'e be the principal indices of refraction referring t

ordinary and extraordinary rays respectively, jj! in the casi

supposed must be replaced by \jl
0 for the bands polarized in a

perpendicular to the plane of incidence, and by
fj,0

for the

polarized in the plane of incidence. In the case of a plat

from a biaxal crystal in such a direction that one of the pru

axes, or axes of elasticity, is parallel to the refracting edg<

same formulas will apply to that system of bands which is poll

in the plane of incidence.

If the plate be cut from a biaxal crystal in a direction pc

dicular to one of the principal axes, and be held in the vc

position, the formula (2) will apply to both systems of bands,

small effect of the obliquity be neglected. The formula won

exact if the observations were taken by receiving each fixec

in succession at a perpendicular incidence.

If the plate be cut from a uniaxal crystal in a direction

pendicular to the axis, and be held obliquely, we have f<

extraordinary bands, which are polarized in a plane perpend

to the plane of incidence,

H — T (^J - fj

f

sin
2
% — cos
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which is the same as the formula in Airy’s Tract, only modified so

as to suit the case in which the plate is immersed in fluid, and

expressed in terms of refractive indices instead of velocities. It

we take a subsidiary angle j, determined by the equation

sinj? = — sin i (8),

the formula (7) becomes

R= T(fjb0 cosj—

p

cos i) (9),

which is of the same form as (5), and may be adapted to logarith-

mic calculation if required by assuming « tan 0. The pre-

ceding formula will apply to the extraordinary bands formed by a

plate cut from a biaxal crystal perpendicular to a principal axis,

and inclined in a principal plane, the extraordinary bands being

understood to mean those which are polarized in a piano perpen-

dicular to the plane of incidence. In this application we must

take for
fj,0 , fi0 those two of the three principal indices of refraction

which are symmetrically related to the axis normal to the plate,

and to the axis parallel to the plate, and lying in the piano of

incidence, respectively; while in applying the formula (4), (5) or

(6) to the other system of bands, the third principal index must bo
substituted for

It is hardly necessary to consider the formula which would
apply to the general case, which would be rather complicated.

9. If a plate cut from a uniaxal crystal in a direction perpen-
dicular to the axis be placed in the fluid in an inclined position,

and be then gradually made to approach the vertical position, the

breadths of the bands belonging to the two systems will become
more and more nearly equal, and the two systems will at last

coalesce. This statement indeed is not absolutely exact, because
the whole spectrum cannot be viewed at one© by light which
passes along the axis of the crystal, on account of the dispersion

accompanying the first refraction, but it is very nearly exact.

With quartz it is true there would be two systems of bands seen

even in the vertical position, on account of the peculiar optical

properties of that substance; but the breadths of the bands
belonging to the two systems would be so nearly equal, that it

would require a plate of about one-fifth of an inch thickness to

give a difference of one in the number of bands seen in the whole
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spectrum in the case of the two systems respectively. If the plate

should be thick enough to exhibit both systems, the light would

of course have to be circularly analyzed to show one system by

itself.

Section II.

—

Investigation of the intensity of the light on the

complete theory of undulations, including the explanation of the

apparent polarity of the bands.

10. * The explanation of the formation of the bands on the im-

perfect theory of interferences considered in the preceding section

is essentially defective in this respect, that it supposes an annihi-

lation of light when two interfering streams are in opposition
;

whereas it is a most important principle that light is never lost by

interference. This statement may require a little explanation,

without which it might seem to contradict received ideas. It is

usual in fact to speak of light as destroyed by interference.

Although this is true, in the sense intended, the expression is

perhaps not very happily chosen. Suppose a portion of light

coming from a luminous point, and passing through a moderately

small aperture, to be allowed to fall on a screen. We know that

there would be no sensible illumination on the screen except

almost immediately in front of the aperture. Conceive now the

aperture divided into a great number of small elements, and

suppose the same quantity of light as before to pass through each

element, the only difference being that now the vibrations in the

portions passing through the several elements are supposed to

have no relation to each other. The light would now be diffused

over a comparatively large portion of the screen, so that a point P
which was formerly in darkness might now be strongly illuminated.

The disturbance at P is in both cases the aggregate of the disturb-

ances due to the several elements of the aperture
; but in the first

case the aggregate is insensible on account of interference. It is

only in this sense that light is destroyed by interference, for the

total illumination on the screen is the same in the two cases
;
the

effect of interference has been, not to annihilate any light, but

only to alter the “ distribution of the ‘ illumination,” so that the

light, instead of being diffused over tbe screen, is concentrated in

front of the aperture.
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Now in the case of the hands considered in Section I, if we
suppose the plate extremely thin, the hands will he very broad

;

and the displacement of illumination due to the retardation being

small compared with the breadth of a band, it is evident, without

calculation, that at most only faint bands can be formed. This

particular example is sufficient to show the inadequacy of the im-

perfect theory, and the necessity of an exact investigation.

11. Suppose first that a point of homogeneous light is viewed

through a telescope. Suppose the object-glass limited by a screen

in which there is formed a rectangular aperture of length 2Z.

Suppose a portion of the incident light retarded, by passing

through a plate bounded by parallel surfaces, and having its edge

parallel to the length of the aperture. Suppose the unretarded

stream to occupy a breadth h of the aperture at one side, the re-

tarded' stream to occupy a breadth k at the other, while an interval

of breadth exists between the streams. In the apparatus men-

tioned in Section I., the object-glass is not limited by a screen, but

the interfering streams of light are limited by the dimensions of

the fluid prism, which comes to the same thing. The object of

supposing an interval to exist between the interfering streams, is

to examine the effect of the gap which exists between the streams

when the retarding plate is inclined. In the investigation the

effect of diffraction before the light reaches the object-glass of the

telescope is neglected.

Let 0 be the image of the luminous point, as determined by

geometrical optics, f the focal length of the object-glass, or rather

the distance of 0 from the object-glass, which will be a little greater

than the focal length when the luminous point is not very distant.

Let 0 be a point in the object-glass, situated in the middle of the

interval between the two streams, and let the intensity be required

at a point M
,
near 0, situated in a plane passing through 0 and

perpendicular to 0(7. The intensity at any point of this plane will

of course be sensibly the same as if the plane were drawn perpen-

dicular to the axis of the telescope instead of being perpendicular

to 0(7. Take 0(7 for the axis of the axes of x and y being

situated in the plane just mentioned, and that of y being parallel

to the length of the aperture. Let p , q be the co-ordinates of M

;

x
, y,

z those of a point P in the front of a wave which has just

passed through the object-glass, and which forms part of a sphere
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with. 0 for its centre. Let c be the coefficient of vibration at the

distance of the object-glass; then we may take

l.~sm^{vt-m)dxdy. (a),

to represent the disturbance at M due to the element dxdy of the

aperture at P, P being supposed to be situated in the unretarded

stream, which will be supposed to lie at the negative side of the

axis of x. In the expression (a), it is assumed that the proper

multiplier of c/PM is 1/X. This may be shown to be a necessary

consequence of the principle mentioned in the preceding article,

that light is never lost by interference
;
and this principle follows

directly from the principle of vis viva. In proving that AT
1

is the

proper multiplier, it is not in the least necessary to enter into the

consideration of the law of the variation of intensity in a secondary

wave, as the angular distance from the normal to the primary wave

varies
;
the result depends merely on the assumption that in the

immediate neighbourhood of the normal the intensity may be re-

garded as sensibly constant.

In the expression (a) we have

PM= V {?

2 + (« -p)
2 +{y~ q)

2

) = V{/
2

+jp* + q
2 - - 2qy}

=/-
J

(px + qy)> nearly,

if we write / for V(/
2 +p2

-+ q
2
). It will be sufficient to replace

1/PM outside the circular function by 1/f. We may omit the con-

stant/under the circular function, which comes to the same thing

as changing the origin of t. We thus get for the disturbance atM
due to the unretarded stream,

c r -9 ri
. 2tt (
sm

Xj J -l x
1

\vt+j.(pa; + qy)\ dxdy,

or on performing the integrations and reducing,

_VL sin It sin sin (vt (V)

Xf
'

2-jrql
Sln

X/ X/
‘ Sm

X [
Vt

f Xf)

For the retarded stream, the only difference is that we must

subtract B from vt> and that the limits of x are g and g 4* h. We
thus get for the disturbance at M due to this stream,

2old Xf . %rql Xf . rnrph . rv sm —x. . sm . sm—
Xf Z7rql Xf 7rpk Xf X
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If we put for shortness r for the quantity under the last circular

function in (l), the expressions (b), (c) may be put under the forms

u sin r, a sin (r — a), respectively ;
and if /be the intensity, I will

be measured by the sum of the squares of the coefficients of sin r

and cos t in the expression

u sin r-ft? sin (t — ct).

so that

7= u2
-f v

2 + 2uv cos a
,

which becomes, on putting for u, v and a, their values, and putting

12. Suppose now that instead of a point we have a line of

homogeneous light, the line being parallel to the axis of ?/. The

luminous line is supposed to be a narrow slit, through which light

enters in all directions, and which is viewed in focus. Consequently

each element of the line must be regarded as an independent source

of light. Hence the illumination on the object-glass due to a por-

tion of the line which subtends the small angle ft at the distance

"of the object-glass varies as ft, and may be represented by Aft .

Let the former origin 0 be referred to a new origin O' situated in

the plane xy, and in the image of the line
;
and let rj

,
q' be the

ordinates of 0, If referred to O', so that q~ q —r]. In order that

the luminous point considered in the last article may represent an

element of the luminous line considered in the present, we must

replace c* by Adft or Af^drj; and in order to get the aggregate

illumination due to the whole line, we must integrate from a large

negative to a large positive value of rj
,
the largeness being esti-

mated by comparison with \f/l. Now the angle %irqlj\f changes

by 7r when q changes by Xf/21, which is therefore the breadth, in

the direction of y, of one of the diffraction -bands which would be

seen with a luminous point. Since l is supposed not to be ex-

tremely small, but on the contrary moderately large, the whole

system of diffraction bands would occupy but a very small portion

of the field of view in the direction of y, so that w© may without
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sensible error suppose the limits of r) to be — oo and + °o . We
have then

by taking the quantity under the circular function in place of rj for

the independent variable. Now it is known that the value of the

last integral is 7r, as will also presently appear, and therefore we

have for the intensity I at any point,

/-^vlhv) + rv')
. 7Tvh . TTpk

+ 2 sm .sin— . cos
Ay AJ

p -^(4g+h + k)

which is independent of q\ as of course it ought to be.

....(12),

13. Suppose now that instead of a line of homogeneous light

we have a line of white light, the component parts of which have

been separated, whether by refraction or by diffraction is imma-

terial, so that the different colours occupy different angular posi-

tions in the field of view. Let be the illumination on the

object-glass due to a length of the line which subtends the small

angle /3, and to a portion of the spectrum which subtends the small

angle ^ at the centre of the object-glass. In the axis of x take a

new origin 0'\ and let f, p be the abscissae of O',M reckoned from

0", so that p = p' — In order that (12) may express the intensity

at M due to an elementary portion of the spectrum, we must

replace A by Bd\jr, or Bf~
r

d%\ and in order to find the aggregate

illumination at M} we must integrate so as to include all values of

f which are sufficiently near to p to contribute sensibly to the

illumination at M. It would not have been correct to integrate

using the displacement instead of the intensity, because the differ-

ent colours cannot interfere. Suppose the angular extent, in the

direction of x
y
of the system of diffraction bands which would be

seen with homogeneous light, or at least the angular extent of the

brighter part of the system, to he small compared with that of the

spectrum. Then we may neglect the variations of B and of A in

the integration, considering only those of £ and p, and we may
suppose the changes of p proportional to those of t~; and we may
moreover suppose the limits of £ to be — 00 and + 00 . Let p

f

be
the value of p, and - rs that of dp/dg, when f =j/, so that we may
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put p = p + or (jp'— f); and take p instead of £ for the independent
variable. Then putting for shortness

irh , irk 7
•= — = 7c. - £A*9 +h + k)= ff, (13),V

we have for the intensity,

2B\l r°° rl
/== — {sin

2 h
yp-b sin

2
k,p + 2 sin h

tp . sin k
tp . cos (p

r — grjj)} zE
m

Now
J

sin
2

fyp = h,
J

sin
2 d^ — 7rhr

Similarly,
J

sin
2 k

tp .^=s wA,.

Moreover, if we replace

cos
(p ~g,p) by cos />' . cos gtp + sin p . sin g dp,

the integral containing sin p will disappear, because the positive

and negative elements will destroy each other, and we have only to

find w
y
where

w
=

J

sin h
tp . sin k

tp . cos g tp .
— .

Now we get by differentiating under the integral sign,

dw r *
7 * 7

• <&>
y- = — I sm \p . sin k

tp . sm
dg, J -co

1 f
00

= Ij _ oo
fa, + h

J + k
/)p+ sin (p,

- A, - *,)

- sin ($r, + h,-k)p- sin ($r, + k, - A,)^}J
But it is well known that

r sin ,9u 7
I dp = 7T, Or = ~ 7T,

J -co P
according as $ is positive or negative. If then we use («$) to de-

note a discontinuous function of s which is equal to 4- 1 or — 1

according as s is positive or negative, we get

This equation gives

^ = 0, from ^,=--se to 0, *-(£, + &,)

5175

//<?- £
MO-2.
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= g
, from g,

= - (A, + A) to g,
= - (A, ~ k)

= 0, from g=- (A, - k) to g, = + (A, ~ A,)

= -£, from g,
= h~k, to g ,

= ?>,+ k,

= 0, from g/
= K, +* h

t
to gt

= oo

.

Now w vanishes when is infinite, on account of the fluctuation

of the factor cos gp under the integral sign, whence we get by

integrating the value of dwjdg, given above, and correcting the

integral so as to vanish for g t
= — oo

,

w = 0, from gt
= - oo to gt

= — (A
y

-1- /cj
;

w = j + A, + <7,)> from 9, = “ (A, + *0 to gt
= - (A, ~ A,)

;

w = ’irJc
/
or — irk,, (according as h, > k

l
or A < A

())

from g = - (A, ~ A,) to g,=+ (A, ~ A )

;

IT
™ = + k - 9)> from

,7,
= h

'

~ h t0 & = A, + A,

;

w~0, from gf
— h, + k

t
to gt

= co

.

Substituting in the expression for the intensity, and putting

in (13) gt
= nrg'jXf, so that

g'= ~~~~ 4g — h — k (14),
7T

we get

J=^(A + A) (15),

when the numerical value of g’ exceeds h + Jc;

OTfJ

I=j% {h + Ic + (Ji + k->Jg'*)cosp) (16),

when the numerical value of g lies between h + h and Ji ~ k
;

9m 9 m
r~jf(h + k+%hcosp')

}
oi = ^(h + k+ 2kcosp') ...(17),

according as h or k is the smaller of the two, when, the numerical

value of g
r

is less than h ~ k.

The discontinuity of the law of intensity is very remarkable.
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By supposing gt
— 0, k

t
= h

t
in the expression for w, and observ-

ing that these suppositions reduce w to

a result already employed. This result would of course have been

obtained more readily by differentiating with respect to hr

14. The preceding investigation, will apply, with a very trifling

modification, to Sir David Brewster’s experiment, in which the

retarding plate, instead of being placed in front of the object-glass

of a telescope, is held close to the eye. In this case the eye itself

takes the place of the telescope; and if we suppose the whole"

refraction to take place at the surface of the cornea, which will not

be far from the truth, we must replace / by the diameter of the

eye, and ^ by the angular extent of the portion of the spectrum

considered, diminished in the ratio of m to 1, m being the refrac-

tive index of the cornea. When a telescope is used in this experi-

ment, the retarding plate being still held close to the eye, it is

still the naked eye, and not the telescope, which must be assimi-

lated to the telescope considered in the investigation; the only

difference is that ^ must be taken to refer to the magnified, and

not the unmagnified spectrum.

Let the axis of x be always reckoned positive in the direction

in which the blue end of the spectrum is seen, so that in the

image formed at the focus of the object-glass or on the retina,

according as the retarding plate is placed in front of the object-

glass or in front of the eye, the blue is to the negative side of the

red. Although the plate has been supposed at the positive side,

there will thus be no loss of generality, for should the plate be at

the negative side it will only be requisite to change the sign of p.

First, suppose p to decrease algebraically in passing from the

red to the blue. This will be the case in Sir David Brewster’s

experiment when the retarding plate is held at the side on which

the red is seen. It will be the case in Professor Powell’s experi-

ment when the first of the arrangements mentioned in Art. 2 is

employed, and the value ofN in the table of differences mentioned
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in Art. 5 is positive, or when the second arrangement is employed

and N is negative. In this case is negative, and therefore

g <-~ (h+k), and therefore (15) is the expression for the inten-

sity. This expression indicates a uniform intensity, so that there

are no bands at all.

Secondly, suppose p to increase algebraically in passing from

the red to the blue. This will be the case in Sir David Brewsters

experiment when the retarding plate is held at the side on which

the blue is seen. It will be the case in Professor Powell’s experi-

ment when the first arrangement is employed and N is negative,

or when the second arrangement is employed and N is positive.

In this case nr is positive
;
and since w varies as the thickness of

the plate, gf may be made to assume any value from — (4$ +h + Jc)

to + oo by altering the thickness, of the plate. Hence, provided the

thickness lie within certain limits, the expression for the intensity

will be (16) or (17). Since these expressions have the same form

as (1), the magnitude only of the coefficient of cos p, as compared

with the constant term, being different, it is evident that the

number of bands and the places of the minima are given correctly

by the imperfect theory considered in Section I.

15. The plate being placed as in the preceding paragraph,

suppose first that the breadths h
,
h of the interfering streams are

equal, and that the streams are contiguous, so that <7 = 0. Then

the expression (17) may be dispensed with, since it only holds

good when g — 0, in which case it agrees with (16). Let T0
be

the value of the thickness T for which y' = 0. Then T~ 0 corre-

sponds to g' = — (h + k), T= T
0
to g' = 0, and T=2T

0
to g

r = Ji -f k ;

and for values of T equidistant from T0J the values of g
r

are equal

in magnitude but of opposite signs. Hence, provided T be less

than 2T0) there are dark and bright bands formed, the vividness of

the bands being so much the greater as T is more nearly equal to

T0 ,
for which particular value the minima are absolutely black.

Secondly, suppose the breadths h
,
k of the two streams to be

equal as before, but suppose the streams separated by an interval

2g ;
then the only difference is that g'= — (h + Jc) corresponds to a

positive value, T
2
suppose, of T. If T be less than jP

2 , or greater

than 2T
0
- T

2 , there are no bands; but if T lie between T
2
and

2T
0— T2

bands are formed, which are most vivid when T
0 ,

in

which, case the minima are perfectly black.
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Thirdly, suppose the breadths k3 h of the interfering streams

^qual, and suppose, as before, that the streams are separated by

^ interval 2g ;
then g = — (h -f k) corresponds to a positive value,

‘
* suppose, of T : g = — (h ~ 1c) corresponds to another positive

'^tue, T
t
suppose, of T

,

r
l\ lying between T

2
and T

0 ,
T

0
being, as

^fore, the value of T which gives g' = 0. As T increases from 1\

,

becomes positive and increases from 0, and becomes equal to

when 21\-TV and to h + k when 2 T= 2

T

0
- Tr When

; x T2
there are no bands. As T increases to T

x
bands become

x
^ible, and increase in vividness till T= 2\ }

when the ratio of the

^Himum intensity to the maximum becomes that of h — lc to
' + 3Ic, or of k —h to k -j- 3h}

according as h or k is the greater of

two, h
,
k. As T increases to 2 7

7

0
— T

x ,
the vividness of the

a*ids remains unchanged
;
and as T increases from 2T

0
— 1\ to

^0 — T
%9 the vividness decreases by the same steps as it before in-

cased. When T—2T
0
-~T2> the bands cease to exist, and no

a*ids are formed for a greater value of T.

Although in discussing the intensity of the bands the aperture

been supposed to remain fixed, and the thickness of the plate
3 alter, it is evident that we might have supposed the thickness

£ the plate to remain the same and the aperture to alter. Since
r oc T> the vividness of the bands, as measured by the ratio of the

maximum to the minimum intensity, will remain the same when
n
varies as the aperture. This consideration, combined with the

revious discussion, renders unnecessary the discussion of the effect

f altering the aperture. It will be observed that, as a general

lie, fine bands require a comparatively broad aperture in order

lat they may be well formed, while broad bands require a narrow

perture.

16. The particular thickness T
0
may be conveniently called

ie best thickness. This term is to a certain extent conventional,

nee when h and k are unequal the thickness may range from I\

> 2T0
— T

x
without any change being produced in the vividness of

ie bands. The best thickness is determined by the equation

—%-^9+h + h).

0yr in passing from one band to its consecutive, p changes by 2-rr,

id ? by e, if e be tbe linear breadth of a hand; and for this small

8. XX. 3
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change of £ we may suppose the changes of p and £ proportional,
{

or put — dp/d!; = %7rje. Hence the best aperture for a given thick-

ness is that for which

4g + h+ h — .

If g = 0 and Jc = h, this equation becomes h = Xf/e. |

The difference of distances of a point in the plane xy whose

coordinates are £, 0 from the centres of the portions of the object-

glass which are covered by the interfering streams, is nearly

°r
> i

and if 8 be the change of f when this difference changes by X,
|

4y + h + k =
^jf.

Hence, when the thickness of the plate is equal to the best thick-

ness, e = $, or the interval between the bands seen in the spectrum

is equal to the interval between the bands formed by the inter-

ference of two streams of light, of the colour considered, coining

from a luminous line seen in focus, and entering the object-glass

through two very narrow slits parallel to the axis of y, and situated

in the middle of the two interfering streams respectively- This

affords a ready mode of remembering and calculating the best

thickness of plate for a given aperture, or the best aperture for a

given thickness of plate.

17. According to the preceding explanation, no hands would

be formed in Sir David Brewster’s experiment when the plat© was
held on the side of the spectrum on which the red was seen. Mr
Airy has endeavoured to explain the existence of bands under such

circumstances*. Mr Airy appears to speak doubtfully of his ex-

planation, and in fact to offer it as little more than a conjecture to

account for an observed phenomenon. In the experiments of Mr
Talbot and Mr Airy, bands appear to have been seen when
retarding plate was held at the red side of the spectrum; whereas
Sir David Brewster has stated that he has repeatedly looked for

the bands under these circumstances and has never been able to a

1 Philosophical Transactions tor 1841, Part i. p. 6.
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find the least trace of them; and he considers the bands seen by-

Mr Talbot and Mr Airy in this case to be of the nature of Newton’s

rings. While so much uncertainty exists as to the experimental

circumstances under which the bands are seen when the retarding

plate is held at the red side of the spectrum, if indeed they are seen

at all, it does not seem to be desirable to enter into speculations as

to the cause of their existence.

3—2



[From the Cambridge and Dublin Mathematical Journal, Yol. m. p. 209

{November, 1848)].

Notes on Hydrodynamics.

IY.

—

Demonstration of a Fv/ndamental Theorem.

Theorem. Let the accelerating forces X, Y, Z, acting on the

fluid, he such that Xdx + Ydy + Zdz is the exact differential d V
of a function of the coordinates. The function V may also contain

the time t explicitly, but the differential is taken on the suppo-

sition that t is constant. Suppose the fluid to be either homo-

geneous and incompressible, or homogeneous and elastic, and of

the same temperature throughout, except in so far as the tem-

perature is altered by sudden condensation or rarefaction, so that

the pressure is a function of the density. Then if, either for the

whole fluid mass, or for a certain portion of it, the motion is at

one instant such that udx + vdy 4- wdz is an exact differential,

that expression will always remain an exact differential, in the

first case throughout the whole mass, in the second case throughout

the portion considered, a portion which will in general continually

change its position in space as the motion goes on. In particular,

the proposition is true when the motion begins from rest.

Two demonstrations of this important theorem will here be

given. The first is taken from a memoir by M. Cauchy, a M£-

moire sur la Thdorie des Ondes, &c,” (Mdm. des Savans Stran-

gers, Tom. I. (1827), p. 40). M. Cauchy has obtained three

first integrals of the equations of motion for the case in which

Xdx+ Ydy+ Zdz is an exact differential, and in which the pres-

sure is a function of the density
;
a case which embraces almost

all the problems of any interest in this subject. M. Cauchy, it is
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true, has only considered an incompressible fluid, in accordance

with the problem he had in hand, but his method applies to

the more general case in which the pressure is a function of the

density. The theorem considered follows as a particular conse-

quence from M. Cauchy's integrals. As however the equations

employed in obtaining these integrals are rather long, and the

integrals themselves do not seem to lead to any result of much

interest except the theorem enunciated at the beginning of this

article*, I have given another demonstration of the theorem,

which is taken from the Cambridge Philosophical Transactions

(Vol. viii. p. 307 f). A new proof of the theorem for the case

of an incompressible fluid will be given by Professor Thomson in

this Journal.

First Demonstration. Let the time t and the initial co-

ordinates a, b, c be taken for the independent variables
;
and

let f—= P, p being by hypothesis a function of p . Since we
J p

have, by the Differential Calculus,

dP
__
dP dx dP dy dP dz

da
~~
dx da dy da dz da"

with similar equations for b and c
,
we get from equations (1),

p. 124 (Notes on Hydrodynamics, No. ill.) [Ante, p. 4],

dV dP _ d2x dx Py dy Pz dz

'

da da ~~ df da
+
df da

+
df da

dV dP
___
d2x dx ^ Py dy ^Pzdz m

Tb~ dfdb+lfM^dfdb
|

dV^ dP ___
d2x dx Py dy d2z dz

dc dc dt dc
+
df dc~*~ df dc .

In these equations Px/df, dxjda
}
&c. have been written for D2x/Df,

Px/Da, &c., since the context will sufficiently explain the sense in

which the differential coefficients are taken. By differentiating

the first of equations (1) with respect to b
,
the second with respect

.* [See however the note at p. 47.]

f [.Ante, Vol. i. p. 108. Although given already in nearly the same form, the

demonstration is here retained, to avoid breaking the continuity of the present article.]



38 TOTES ON HYDRODYNAMICS.

to a, and subtracting, we get, after putting for dxfdt, dy/dt,
dz/dt

their values v, v, w.

dhi dx

dtdb da

d2v dx d*v dy d2
v_ dy ffw dz

dtda db * dtdb dec dtda db * dtdb da

d2w dz

dtda db (
2).

By treating the second and third, and then the third and first

of equations (1) as the first and second have been treated, we

should get two more equations, which with (2) would form a

symmetrical system. Now it is easily seen, on taking account of

the equations dx/dt = u, &c., that the first side of (2) is the dif-

ferential coefficient with respect to t of

du dx du dx dv dy ^ dv dy
^
dw dz _ d'lu dz

db da da db^ db da da db db da da db
' ’

the differential coefficient in question being of course of the kind

denoted hy D in No. ill. of these Notes. Hence the expression

(3) is constant for the same particle. Let u
0 ,

v^
}
tv0 be the initial

velocities of the particle which at the time t is situated at the

point (x, y,
z); then if we observe that x=a, y-b, z=c, when

t= 0, we shall get from (2) and the two other equations of that

system.

du dx dv dx dv dy (fo_ dy dw dz dw dz _ du^ d\
^

db da da db^ db da da db db da da db db da

dv dx

dc db

du dx

db dc

dv dy

dc db

dv dy dw dz

db dc
"h

dc db

dw dz * dv
t__

db dc dc

dwn

db

dv dx du dx dv dy dv dy dw_ dz dw dz
___

dw^ du0
da dc dc da ^ da dc • dc da da dc dc da ~ da dc

These are the three first integrals of the equations of motion

already mentioned. If we replace the differential coefficients

of u, v and w, taken with respect to a3 b and c, by differential

coefficients of the same quantities taken with respect to y
and z

}
and differential coefficients of cc, y and z taken with respect

to a, l and c, the first sides of equations (k) become
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\ (<h_dw\ /dzdy dz dy\ -)

J\dbda dadbj [dz dy)\dbda dadbjl
fdw _ du\

\dx dz)

fdy doc _dydx\
\dc db db dc)

'dy dx

4a do

dy dx

dc da,

- (
^z dy

dy) \db da

__
dx dz\

da db)

- (§1 dy

dy) \dc db

dx dz\

db dc)

dw\ fdz dv

dz dy

da db.

fdz dy^dz dy
4a dc dc da

fdw du\ /dx dz dx dz\
\dx dz) \da dc

~
dc daj

( dv\

\dy dx)

Having put the first sides of equations (4) under the form (5)we may solve the equations, regarding
' ’

dv_dw dw du
dy dx dz dy ’ dx dz

/I *i® F°r thiS PUrP°Se multiP1y equations
(4,) by dz/dc, dz/da, dz/db, and add; then the second and thirdunknown quantities will disappear. Again, multiply by dx/dcpda, dx/db

, and add; then the third and first 111 dLppfr’Lastly, multiply by dy/dc, dy/da, dy/db, and add; then the firstMid second will disappear. Putting for shortness

d£^dydz_dxdydz dxdydz dx dy dz
dadbdc da3c db

+
db dc da dbdadc

+ i^dydz^dxdydz_
dc da db dc dbda~" ’

p© thus get

dv
doc

i

R
fdz

fe
1

(du
0

\db

_dv?

da i

(*>•

[dc
'

dw?
~

dbj
)+~l+ db

dw = -l
dx

i

'du
0 _dv

0
)

dx. 'dv
0 dw\ dx~dy R\ dc (vdb

'

#
da)da\ db)

+
db

r du
dz

i
~R ft

'dv^_

\ab
_
dv

o)

da)'+£i
(dv,

Uc"
_
dw?

db)
dy fdw_0 _
ab \ da cLc,
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Consider the element of fluid “which at first occupied the

rectangular parallelepiped formed hy planes drawn parallel to

the coordinate planes through the points
(
a,b,c

)
and (a±da,

l^db, c + dc). At the time t the element occupies a space

bounded by six curved surfaces, which in the limit becomes an

oblique-angled parallelepiped. The coordinates of the particle

which at first was situated at the point (a, b, c
)
are x, y, z at the

time t

;

and the coordinates of the extremities of the three edges

of the oblique-angled parallelepiped which meet in the point

(«, 2A z
)
are

dx 7
da,

da y + Ta
da

’ 4 ^ da;
da

.
dx ,,x+
db

db
’ y + %db, * +

Tb
il >

a: + ~do,
dc y+-£ dc>

.

z 4 dc.
dc

Consequently, by a formula in analytical geometry, the volume

of the element which at first was da db dc is R da db dc at the

time t. Hence if p 0
be the initial density,

From the mode in which this equation has been obtained, it is

evident that it can be no other than the equation of continuity,

expressed in terms of a
,
b, c and t as independent variables, and

integrated with respect to t

The preceding equations are true independently of any par-

ticular supposition respecting the motion. If the initial motion

be such that n
0
da 4 v^db 4 wQ

dc is an exact differential, and in

particular if the motion begin from rest, we shall have

^-"-^2 = 0 — ft ft •

db da
9

dc db 9 da dc 7

and since by (8) R cannot vanish, it follows from (7) that at any

time t

du dv _ , dv dw
__ dw du '

dy dx 1

dz dy * dx dz***
9

or n dx 4 v dy + w dz is an exact differential.
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Since any instant may be talcen for the origin of the time,

and t may be either negative or positive, it is evident that for

a given portion of the fluid u dx 4- v dy 4- vi (Lz cannot coaso to

be au exact differential if it is once such, and cannot become an

exact differential, not having been such previously.

Second Demonstration. The equations of motion in their

usual form are

1 dp -*r du du du du

p dx dt dx dy a

z

1 dp
__

dv

p dy dt

dv dv dv
u ~

7 v 7
— w -y ~

ax dy dz

l dv ry dw dw dm dm=Z- -rr -u-7 v f w -T ~

p dz at dx dy dz

f-
(»).

Differentiating the first of these equations with respect to y and

the second with respect to x, subtracting, and observing that by
hypothesis j? is a function of p, and Xdx+ Ydy+ Zdz is an exact

differential, we have

(A
\dt

d d
,

d
,

d
+• u h X -J f

- VJ
doc ay dz,K

du dv\

dy dx)

du du dv da
dy dx

"h
dy dy

+
dm du du dv

dy dz dx dx
dv dv

dx dy

dw dv
' dxdz* (10).

According to the notation before employed,

d d d d
dt

U
doc

V
dy

W
dz

means the same as DJDt. Let

dw dw
dx

dm dv ,

dy dz~~
a'*

dz
2

dv

dx

du
'

dy
' = 2»" (ii);

then the last six terms of (10) become, on adding and subtracting
du dv *

°

dz dz

.
O J r to d/O „6 -J- 00 +* Lt -=- CO
dz dz

(du dv\

\dx * dy)

dw duo T , _

-fa ^ W0Tlld iiavQ done as well
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We thus get from (10), and the other two equations which would

be formed in a similar manner from (9),

Deo"’ du ,
,

dv „ /du dv\ '

Dt
' + -7- C0 ~l

az \dx
+
dy)

Deo dv ,, ,

dw (dv dw\
,

dt
+— CO -
ax \dy

Deo" dw .
du , (dw

,

du\ „

Dt '~dy
a + dy“

~
\dz r J

.(12).

Now the motion at any instant varying continuously from one

point of the fluid to another, the coefficients of co', co", co"' on

the second sides of equations (12) cannot become infinite. Sup-

pose that when £=0 either there is no motion, or the motion

is suclr that udx + vdy 4- wdz is an exact differential. This may

be the case either throughout the whole fluid mass or throughout

a limited portion of it. Then co, co", co'" vanish when t = 0. Let

L be a superior limit to the numerical values of the coefficients

of co
,
co", cd" on the second sides of equations (12) from the time 0

to the time t : then evidently co', co", co'" cannot increase faster

than if they satisfied the equations

Drd"J-/UJ T / 1
i i

tf'\= L (co + CO + ft)
)

—fi£
= L (o' + to" + co'")

fij,

= L (co -f (O
'

-f- co")

(13),

instead of (12), -vanishing in this case also when t = 0 . By inte-

grating equations (13), and determining the arbitrary constants

by the conditions that co', co", co" shall vanish when t- 0, we
should find the general values of co', co", and co" to be zero.

We need not, however, take the trouble of integrating the
equations; for, putting for shortness

co' + a>"+ co’" = n,

we get, by adding together the right and left-hand sides respect-
ively of equations (13),

DC1
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The integral of this equation is 12= CeLt

;
and since 12 = 0 when

£ = 0, (7=0; therefore the general value of 12 is zero. But 12

is the sum of the three quantities ©', co
n

,
co"', which evidently

cannot be negative, and therefore the general values of co', co", co"'

are each zero. Since, then, co', co", co"' would have to be equal to

zero, even if they satisfied equations (13), they must a fortiori he

equal to zero in the actual case, since they satisfy equations (12),

which proves the theorem enunciated.

Ifc is evident that it is for a given mass of fluid, not for the

fluid occupying a given portion of space, that the proposition is

true, since equations (12) contain the differential coefficients

Dco'/Dt
,
&c. and not doo'/dt, &c. *It is plain also that the same

demonstration will apply to negative values of t.

If the motion should either be produced at first, or modified

during its course, by impulsive pressures applied to the surface

of the fluid, which of course can only be the case when the fluid

is incompressible, the proposition will still be true. In fact, the

change of motion produced by impulsive pressures is merely the

limit of the change of motion produced by finite pressures, when
the intensity of the pressures is supposed to increase and the

duration of their action to decrease indefinitely. The proposition

may however be proved directly in the case of impulsive forces

by using the equations of impulsive motion. If q be the impulsive

pressure, uor v
Q , wQ

the velocities just before, u, v, w the velocities

just after impact, it is very easy to prove that the equations of

impulsive motion are

1 da , N 1 da
’ (v - v

0).

1 dq -(w~w0) ....(14).
p dx v °’

p dy '
v" p

No forces appear in these equations, because finite forces disappear

from equations of impulsive motion, and there are no forces which

bear to finite forces, like gravity, acting all over the mass, the

same relation that impulsive hear to finite pressures applied at

the surface; and the impulsive pressures applied at the sur-

face will appear, not in the general equations which hold good

throughout the mass, but in the particular equations which have

to be satisfied at the surface. The equations (14) are appli-

cable to a heterogeneous, as well as to a homogeneous liquid.

They must be combined with the equation of continuity of a

liquid, (equation (6), p. 286 of the preceding volume.) In the
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case under consideration, however, p is constant
;
and therefore

from (14)

(u-u
0)
dx+(v-v

0)
dy + (w-w0)

dz

is an exact differential d(—q/p); and therefore if u
0 , w

0
be

zero, or if they be such that u
Q
dx -f v

0
dy + wQ

dz is an exact dif-

ferential dcf)Qi udx + vdy +wdz will also be an exact differential

d (&> -?//>)•

When udx -f vdy + wdz is an exact differential cZ</>, the expres-

sion for dP obtained from equations (9) is immediately integrable,

and we get

<“>•

supposing the arbitrary function of t introduced by integration

to be included in <j>.

M. Cauchy’s proof of the theorem just considered does not

seem to have attracted the attention which it deserves. It does

not even appear to have been present to Poisson’s mind when

he wrote his TraiU de Mecanique. The demonstration which

Poisson has given* is in fact liable to serious objectionsf . Poisson

indeed was not satisfied as to the generality of the theorem. It

is not easy to understand the objections which he has raised

which after all do not apply to M. Cauchy’s demonstration, in

which no expansions are employed. As Poisson gives no hint

where to find the “ examples” in which he says the theorem

fails, if indeed he ever published them, we are left to conjecture.

In speaking of the developments of u
,

v, w in infinite series of

exponentials or circular functions, suited to particular problems,

by which all the equations of the problem are satisfied, he re-

marks that one special character of such expansions is, not always

to satisfy the equations which are deduced from, those of motion

by new differentiations. It is true that the equations which

would apparently be obtained by differentiation would not always

be satisfied; for the differential coefficients of the expanded

functions cannot in general be obtained by direct differentiation,

that is by differentiating under the sign of summation, but must

* TraiU de Mecanique, tom. n. p. 688 (2nd edition).

+ See Cambridge Philosophical Transactions, YoLm p. 305. [Ante, Yol. i. p. 110.]

% TraiU de Mecanique, tom. n. p. 690*
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be got from formulae applicable to the particular expansions*.

Poisson appears to have met with some contradiction, from

whence he concluded that the theorem was not universally true,

the contradiction probably having arisen from his having dif-

ferentiated under the sign of summation in a case in which it

is not allowable to do so.

It has been objected to the application of the theorem proved

in this note to the case in which the motion begins from rest,

that we are not at liberty to call udx 4- vdy 4- wdz an exact dif-

ferential when u
,
v

,
and w vanish with t, unless it be proved that

if uv vxi w1
be the results obtained by dividing u

,
v

,
w by the

lowest power of t occurring as a factor in u, v, w> and then putting

t = 0, u
x
dx 4- v

x
dy 4- w

x
dz is an exact differential. Whether we call

udx 4- vdy -f wdz in all cases an exact differential when u
,
v and w

vanish, is a matter of definition although reasons might be as-

signed which would induce us to allow of the application of the

term in all such cases : the demonstration of the theorem is not

at all affected. Indeed, in enunciating and demonstrating the

theorem there is no occasion to employ the term exact differential

at all. The theorem might have been enunciated as follows.

If the three quantities du/dy — dvjdx
,
&c. are numerically equal

to zero when t = 0, they will remain numerically equal to zero

throughout the motion. This theorem having been established,

it follows as a result that when u
,

and w vanish with t,

uffx + vffy + wffz is an exact differential.

The theorem has been shewn to be a rigorous consequence

of the hypothesis of the absence of all tangential force in fluids

in motion. It now becomes a question, How far is the theorem

practically true, or nearly true
;
or in what cases would it lead

to results altogether at variance with observation ?

As a general rule it may be answered that the theorem will

lead to results nearly agreeing with observation when the motion

of the particles which are moving is continually beginning from

rest, or nearly from rest, or is as good as if it were continually

beginning from rest
;
while the theorem will practically fail when

the velocity of a given particle, or rather its velocity relatively

* See a paper “On the Critical Values of the sums of Periodic Series,” Cambridge

Philosophical Transactions
,
Vol. vni. Part 5» [Ante, Vol. i, p. 236.]
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to other particles, takes place for a long continuance in one

direction.

Thus, when a wave of sound is propagated through air, a new
set of particles is continually coming into motion

;
or the motion,

considered with reference to the individual particles, is continually

beginning from rest. When a wave is propagated along the

surface of water, although the motion of the water at a distance

from the wave is not mathematically zero, it is insensible, so that

the set of particles which have got any sensible motion is con-

tinually changing. When a series of waves of sound is propa-

gated in air, as for example the series of waves coming from

a musical instrument, or when a series of waves is propagated

along the surface of water, it is true that the motion is not

continually beginning from rest, but it is as good as if it were

continually beginning from rest. For if at any instant the dis-

turbing cause were to cease for a little, and then go on again,

the particles would be reduced to rest, or nearly to rest, when

the first series of waves had passed over them, and they would

begin to move afresh when the second series reached them. Again,

in the case of the simultaneous small oscillations of solids and

fluids, when the forward and backward oscillations are alike, equal

velocities in opposite directions are continually impressed on the

particles at intervals of time separated by half the time of a com-

plete oscillation. In such cases the theorem would generally lead

to results agreeing nearly with observation.

If however water coming from a reservoir where it was sen-

sibly at rest were to flow down a long canal, or through a long

pipe, the tendency of friction being always the same way, the

motion would soon altogether differ from one for which

udx+ vdy -b wdz was an exact differential. The same would

be the case when a solid moves continually onwards in a fltfid.

Even in the case of an oscillating solid, when the forward and

backward oscillations are not similar, as for example when a

cone oscillates in the direction of its axis, it may be con-

ceived that the tendency of friction to alter the motion of

the fluid in the forward oscillation may not be compensated in

the backward oscillation
;

so that, even if the internal friction

be very small, the motion of the fluid after several oscillations

may differ widely from what it would have been had there been
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absolutely do friction. I do not expect that there would be this

wide difference
;
but still the actual motion would probably not

agree so well with the theoretical, as in those cases in which

the forward and backward oscillations are alike. By the theo-

retical motion is of course meant that which would be obtained

from the common theory, in which friction is not taken into

account.

It appears from experiments on pendulums that the effect

of the internal friction in air and other gases is greater than

might have been anticipated. In Dubuat’s experiments on spheres

oscillating in air the spheres were large, and the alteration in

the time of oscillation due to the resistance of the air, as de-

termined by his experiments, agrees very nearly with the result

obtained from the common theory. Other philosophers, however,

having operated on smaller spheres, have found a considerable

discrepancy, which is so much the greater as the sphere employed

is smaller. It appears, moreover, from the experiments of Colonel

Sabine, that the resistance depends materially upon the nature

of the gas. Thus it is much greater, in proportion to the density,

in hydrogen than in air.

Note referred to at p. 37.

[It may be noticed that two of Helmholtz’s fundamental pro-

positions respecting vortex motion* follow immediately from

Cauchy’s integrals
;
or rather, two propositions the same as those

of Helmholtz merely generalized so as to include elastic fluids

follow from Cauchy’s equations similarly generalized.

On substituting in (7) for H the expression given by (8), and

introducing the notation of angular velocities, as in (11), equa-

tions (7) become

dxdx „ ,
,

"db
a
° + fc

co
°

, p dx ,

CO = — J- ®„ +
Pc \da

to-

* CreUe’s Journal , Yol. lv. p. 25.
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We see at once from these equations that if

da _db dc
7 — 7/ nt • • • *

6>
0 ^0

then
d% ___dy __

dz

(C G>' 0)

<J>),

(<0 >

but (6) are the differential equations of the system of vortex lines

at the time 0, and (c), as being of the form

dx dy _ dz

~P~ Q~R’
are the differential equations of the loci of the particles at the

time t which at the time 0 formed the vortex lines respectively.

But when we further taKe account of the values of P> Q, R> as

exhibited in (c), we see that (c) are also the differential equations *

of the system of vortex lines at the time t

.

Therefore the same

loci of particles which at one moment are vortex lines remain

vortex lines throughout the motion.

Let f2
0
be the resultant angular velocity at the time 0 of a

particle P
0
which at the time t is at P, and has X2 for its angular

velocity
;
let ds

0
drawn from P

0
be an element of the vortex line

at time 0 passing through P
0 ,
and ds the element of the vortex

line passing through P at the time t which consists of the same

set of particles. Then each member of equations (6) is equal

to dsJ£lQ)
and each member of equations (c) equal to d$/Cl. Hence

we get from any one of equations (a)

pds = p0
ds

Q

a xi
0

*

LetA
0
be the area of a perpendicular section, at P

0 ,
of a vortex

thread containing the vortex line passing through P0
at the time 0,

a vortex thread meaning the portion of fluid contained within

an elementary tube made up of vortex lines
;
then by what pre-

cedes the same set of particles
t
will at the time t constitute a

vortex thread passing through P; let A be a perpendicular section

* of it passing through P at the time t, and draw. two other per-

pendicular sections passing respectively through the other ex-

tremities of the elements ds
Q
and ds. Then if we suppose, as

we are at liberty to do, that the linear dimensions of A
0
are

indefinitely small compared with the length ds
ot we see at once

that the elements of volume comprised between the tube and
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the pair of sections at the time 0 and at the time t respectively

contain ultimately the same particles, and therefore

pAds PqJL q(Isqj

whence ClA=n
o
A

0 ,

or the angular velocity of any given particle varies inversely

as the area of a perpendicular section through -it of the vortex

thread to which it belongs, and that, whether the fluid be incom-

pressible or elastic.

When these results are deduced from Cauchy’s integrals,

the state of the fluid at any time is compared directly with its

state at any other time; in Helmholtz’s method the state at

the time t is compared with the state at the time t + dt
}
and

so on step by step.

A remaining proposition of Helmholtz’s, that along a vortex

line the angular velocity varies at any given time inversely as

the perpendicular section of the vortex thread, has no immediate

relation to Cauchy’s integrals, inasmuch as it relates to a com-

parison of the state of the fluid at different points at the same

moment. It may however be convenient to the reader that the

demonstration, which is very brief, should be reproduced here.

We have at once from (II)

drf dccT da>
r"_

dx^ dy ^ dz
9

and consequently

UK
dco'

^
dco" da"

dx dy dz j
dx dy dz = 0,

where the integration extends over any arbitrary portion of the

fluid. This equation gives

JJco'dydzA
JJ

od'dzdx + JJ
co

rt
dxdy= 0,

where the double integrals extend over the surface of the space

in question. The latter equation again becomes by a well-known

transformation

JJ
O cos 0 d8= 0,

where dS is an element of the surface of the space, and 6 the

s. n. 4
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angle between tlie instantaneous axis and the normal to the

surface drawn outwards.

Let now the space considered be the portion of a vortex thread

comprised between any two perpendicular sections, of which let

A and A! denote the areas. All along the side of the tube 6 = 90°,

and at the two ends 6 = 180° and = 0°, respectively, and therefore

if XI' denotes the angular velocity at the second extremity of the

portion of the vortex thread considered

XU-fl'J.',

which proves the theorem.]



[From the Philosophical Magazine
,
VoL xxxiil, p. 349 (November, 1848.)]

On a difficulty in the Theory of Sound.

The theoretical determination of the velocity of sound has

recently been the occasion of a discussion between Professor

Cliallis and the Astronomer Royal. It is not my intention to

enter into the controversy, but merely to consider a very re-

markable difficulty which Professor Challis has noticed in con-

nexion with a known first integral of the
.
accurate equations of

motion for the case of plane waves.

The difficulty alluded to is to be found at page 496 of the

preceding volume of this Magazine*. In what follows I shall use

Professor Ohallis’s notation.

* [The following quotation will suffice to put the reader in possession of the

apparent contradiction discovered by Professor Challis. It should be stated that

the investigation relates to plane waves, propagated in the direction of z, and that

the pressure is supposed to vary as the density.

“ The function / being quite arbitrary, we may give it a particular form. Let,

therefore,

2t
id =771 sin {z - (a -f- w)

t}.

A

This equation shows that at any time tj we shall have 70 = 0 at points on the axis

of z, for which

z- (a+w) q=-~,

n\
or z^atx + ~2~ *

At the same time i

c

will have the value at points of the axis for which

z- (a+m)

or
ii\ A
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Without entering into the consideration of the mode in which

Poisson obtained the particular integral

w —f {z—(a + w)t) (1) >

it may easily be shown, by actual differentiation and substitution,

that the integral does satisfy our equations. The function/ being

arbitrary, we may assign to it any form we please, as representing

a particular possible motion, and may employ the result, so long as

no step tacitly assumed in the course of our reasoning fails. The

interpretation of the integral (1) will be rendered more easy by

the consideration of a curve. In Pig. 1 let oz be the axis of z
,

and let the ordinate of the curve represent the values of w for

$ = 0. The equation (1) merely asserts that whatever value the

velocity w may have at any particular point when t = 0, the same

value will it have at the time £ at a point in advance of the former

by the space (a + w) t. Take any point P in the curve of Fig. 1,

and from it draw, in the positive direction, the right line PP'

parallel to the axis of z
}
and equal to

(
a + w) t. The locus of all the

points F will be the velocity-curve for the time t. This curve is

represented in Fig. 2, except that the displacement at common

to all points of the original curve is omitted, in order that the

modification in the form of the curve may be more easily perceived.

This comes to the same thing as drawing PP' equal to wt instead

of (a -f w) t. Of course in this wayF will lie on the positive or

negative side of P, according as P lies above or below the axis of z.

It is evident that in the neighbourhood of the points a, c the curve

becomes more and more steep as t increases, while in the neigli-

Here it is observable that no relation exists between the points of no velocity

and the points of maximum velocity. As m, q, and X are arbitrary constants, we
may even have

in which case the points of no velocity are also points of maximum velocity. ’*]
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bourhood of the points o, b3 z its inclination becomes more and

more gentle.

The same result may easily be obtained analytically. In

Fig. 1, take two points, infinitely close to each other, whoso

abscissae are z and z + dz; the ordinates will be w and

dw ,

io+~j~ dz.
dz

After the time t these same ordinates will belong to points whose

abscissae will have become (in Fig. 2) z + wt and

dw
z + dz + w -f— dzj t.

Hence the horizontal distance between the points, which was dz,

will have become

dw

and therefore the tangent of the inclination, which was dw/dz, will

have become
dw

-A- (A).

l+f?<dz

At those points of the original curve] at which the tangent is

horizontal, dw/dz = 0, and therefore the tangent will constantly

remain horizontal at the corresponding points of the altered curve.

For the points for which dw/dz is positive, the denominator of the

expression (A) increases with t
}
and therefore the inclination of

the curve continually decreases. But when dw/dz is negative,

the denominator of (A) decreases as t increases, so that the curve

becomes steeper and steeper. At last, for a sufficiently large

value of t, the denominator of (A) becomes infinite for some value

of z. How the very formation of the differential equations of

motion with which we start, tacitly supposes that we have to deal

with finite and continuous functions; and therefore in the case

under consideration we must not, without limitation, push our

results beyond the least value of t which renders (A) infinite.

This value is evidently the reciprocal, taken positively, of the

greatest negative value of dw/dz
;
w here, as in the whole of this

paragraph, denoting the velocity when t = 0.
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By the term, continuous function,
I here understand a function

whose value does not alter per sccltum, and not (as the term

is sometimes used) a function which preserves the same alge-

braical expression. Indeed, it seems to me to be of the utmost

importance, in considering the application of partial differential

equations to physical, and even to geometrical problems, to con-

template functions apart from all idea of algebraical expression.

In the example considered by Professor Challis,

. %r

,

w — m sin — [z
A>

(a + w) $},

where m may be supposed positive
;
and we get by differentiating

and putting t = 0,

dw 2irm %irz

dz~~T“ C0S
~T ’

the greatest negative value of which is — 27rm/X; so that the

greatest value of’

t

for which we are at liberty to use our results

without limitation is X/Sirm, whereas the contradiction arrived at

by Professor Challis is obtained by extending the result to a larger

value of t, namely A/4m.

Of course, after the instant at which the expression (A) be-

comes infinite, some motion or other will go on, and we might
wish to know what the nature of that motion was. Perhaps the

most natural supposition to make for trial is, that a surface of

discontinuity is formed, in passing across which there is an abrupt

change of density and velocity. The existence of such a surface

will presently be shown to be possible*, on the two suppositions

that the pressure is equal in all directions about the same point,

and that it varies as the density. I have however convinced
myself, by a train of reasoning which I do not think it worth while
to give, inasmuch as the result is merely negative, that even on
the supposition of the existence of a surface of discontinuity, it is

not
;
possible to satisfy all the conditions of the problem by means

of a single function of the form /{*- (a + w) t}. Apparently,
something like reflexion must take place. Be that as it may, it

is evident that the change which now takes place in the nature
of the motion, beginning with the particle (or rather plane of
particles) for which (A) first becomes infinite, cannot influence a

* [Not so : see the substituted paragraph at the end.]
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particle at a finite distance from, the former until after the expi-

ration of a -finite time. Consequently even after the change in

the nature of the motion, our original expressions are applicable,

at least for a certain time, to a certain portion of the fluid. It

was for this reason that I inserted the words “ without limitation/’

in saying that we are not at liberty to use our original results

without limitation beyond a certain value of t. The full discussion

of the motion which would take place after the change above

alluded to, if possible at all, would probably require more pains

than the result would be worth.

[So long as the motion is continuous, and none of the diffe-

rential coefficients involved become infinite, the two principles

of the conservation of mass and what may be called the conserva-

tion of momentum, applied to each infinitesimal slice of the fluid,

are not only necessary but also sufficient for the complete determi-

nation of the motion, the functional relation existing between the

pressure and density being of course supposed known. Hence any
other principle known to be true, such for example as that of the
conservation of energy, must be virtually contained in the former.

It was accordingly a not unnatural mistake to make to suppose
that in the limit, when we imagine the motion to become dis-

continuous, the same two principles of conservation of mass and
of momentum applied to each infinitesimal slice of the fluid should
still be sufficient, even though one such slice might contain a
surface of discontinuity. It was however pointed out to me by
Sir William Thomson, and afterwards independently by Lord
Rayleigh, that the discontinuous motion supposed above involves

a violation of the principle of the conservation of energy. In fact,

the equation of energy, applied to the fluid in the immediate
neighbourhood of the surface of discontinuity, and combined with
the two equations deduced from the two principles first mentioned,
leads in the case of <r p to

%PP log p/p
r = p

2 — p'2
,

where p, p are the densities at the two sides of the supposed
surface of discontinuity; but this equation has no real root except
/> = />']



[From the Transactions of the Cambridge Philosophical Society,

VoL vm. p. 642.]

On the Formation of the Central Spot of Newton's

Rings befond the Critical Angle.

[Read December 11, 1848.]

When Newton’s Rings are formed between the under surface

of a prism and the upper surface of a lens, or of another prism

with a slightly convex face, there is no difficulty in increasing the

angle of incidence on the under surface of the first prism till it

exceeds the critical angle. On viewing the rings formed in this

manner, . it is found that they disappear on passing the critical

angle, but that the central black spot remains. The most obvious

way of accounting for the formation of the spot under these cir-

cumstances is, perhaps, to suppose that the forces which the

material particles exert on the ether extend to a small, but sen-

sible distance from the surface of a refracting medium
;

so that in

the case tinder consideration the two pieces of glass are, in the

immediate neighbourhood of the point of contact, as good as a

single uninterrupted medium, and therefore no reflection takes

place at the surfaces. This mode of explanation is however liable

to one serious objection. So long as the angle of incidence falls

short of the critical angle, the central spot is perfectly explained,

along with the rest of the system of which it forms a part, by
Ordinary reflection and refraction. 'As the angle of incidence

gradually increases, passing through the critical angle, the ap-

pearance of the central spot changes gradually, and but slightly.

To account then for the existence of this spot by ordinary re-

flection and refraction so long as the angle of incidence falls short
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of the critical angle, but by the finite extent of the sphere of

action of the molecular forces when the angle of incidence exceeds

the critical angle, would be to give a discontinuous explanation to

a continuous phenomenon. If we adopt the latter mode of expla-

nation in the one case we must adopt it in the other, and thus

separate the theory of the central spot from that of the rings,

which to all appearance belong to the same system
;
although the

admitted theory of the rings fully accounts likewise for the exist-

ence of the spot, and not only for its existence, but also for

some remarkable modifications which it undergoes in certain cir-

cumstances*.

Accordingly the existence of the central spot beyond the criti-

cal angle has been attributed by Dr Lloyd, without hesitation, to

the disturbance in the second medium which takes the place of

that which, when the angle of incidence is less than the critical

angle, constitutes the refracted lightf. The expression for the in-

tensity of the light, whether reflected or transmitted, has not how-

ever been hitherto given, so far as I am aware. The object of the

present paper is to supply this deficiency.

In explaining on dynamical principles the total internal reflec-

tion of light, mathematicians have been led to an expression for

the disturbance in the second medium involving an exponential,

which contains in its index the perpendicular distance of the point

considered from the surface. It follows from this expression that

the disturbance is insensible at the distance of a small multiple of

the length of a wave from the surface. This circumstance is all that

need be attended to, so far as the refracted light is concerned, in

explaining total internal reflection
;
but in considering the theory

of the central spot in Newton’s Rings, it is precisely the super-

ficial disturbance just mentioned that must be taken into account.

In the present paper I have not adopted any special dynamical

theory : I have preferred deducing my results from Dresners for-

mulae for the intensities of reflected and refracted polarized light,

which in the case considered became imaginary, interpreting these

imaginary expressions, as has been done by Professor O’Brien J,

* I allude especially to the phenomena described by Mr Airy in a paper printed

in the fourth volume of the Cambridge Philosophical Transactions
, p. 409.

f Report on the present state of Physical Optics. Reports of the British

Association,
Yol. m. p. 310.

X Cambridge Philosophical Transactions ,
Yol. vxn. p, 20.
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in the way in which general dynamical considerations show that

they ought to be interpreted.

By means of these expressions, it is easy to calculate the in-

tensity of the central spot. I have only considered the case in

which the first and third media are of the same nature : the

more general case does not seem to be of any particular interest.

Some conclusions follow from the expression for the intensity,

relative to a slight tinge of colour about the edge of the spot,

and to a difference in the size of the spot according as it is seen by

light polarized in, or by light polarized perpendicularly to the plane

of incidence, which agree with experiment.

1. Let a plane wave of light be incident, either externally or

internally, on the surface of an ordinary refracting medium, sup-

pose glass. Regard the surface as plane, and take it for the plane

xy\ and refer the media to the rectangular axes of y,
z

,
the

positive part of the last being situated in the second medium,

or that into which the refraction takes place. Let l, m, n be the

cosines of the angles at which the normal to the incident wave,

measured in the direction of propagation, is inclined to the

axes ; so that m = 0 if we take, as we are at liberty to do,

the axis of y parallel to the trace of the incident wave on the

reflecting surface. Let V, V() V' denote the incident, reflected,

and refracted vibrations, estimated either by displacements or

by velocities, it does not signify which; and let a
, a,, a denote

the coefficients of vibration. Then we have the following possible

system of vibrations

(A).

In these expressions v, v
f

are the velocities of propagation, and
X, X' the lengths of wave, in the first and second media; so

that v
,
v'

, and the velocity of propagation in vacuum, are propor-

tional to X, X', and the length of wave in vacuum : l is the sine,

and n the cosine of the angle of incidence, V the sine, and nr

the

V = a cos— (vt — lx — 7iz)y
A

27T
V, = a

y
cos (vt — loo H- nz)

yA

V' = a

!

cos~ (v't— I'x — ii
r

z)
, jA *'
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cosine of the angle of refraction, these quantities being connected

by the equations

— = n = Ji- r, n = (1 ).
V V

v J

2. The system of vibrations (A) is supposed to satisfy certain

linear differential equations of motion belonging to the two media,

and likewise certain linear equations of condition at the surface of

separation, for which z — 0. These equations lead to certain

relations between a, a
y ,

and a, by virtue of which the ratios

of a
t
and a to a are certain functions of Z, v, and v, and it

might be also of X. The equations, being satisfied identically,

will continue to be satisfied when l' becomes greater than 1, and

consequently n' imaginary, which may happen, provided v' > v

;

but the interpretation before given to the equations (A) and

(1) fails.

When n' becomes imaginary, and equal to v (— 1 ), v being

equal to —
1), z instead of appearing under a circular func-

tion in the third of equations (A), appears in one of the expo-

nentials e±kVz , ti being equal to 2nr/X'. By changing the sign of

V(— 1) we should get a second system of equations (A), satisfying,

like the first system, all the equations of the problem
;
and we

should get two new systems by writing vt + X/4 for vt. By com-

bining these four systems by addition and subtraction, which is

allowable on account of the linearity of our equations, we should

be able to get rid of the imaginary quantities, and likewise of the

exponential e
+*f/z

,
which does not correspond to the problem,

inasmuch as it relates to a disturbance which increases inde-

finitely in going from the surface of separation into the second

medium, and which could only be produced by a disturbing

cause existing in the second medium, whereas none such is sup-

posed to exist.

3. The analytical process will be a good deal simplified by

replacing the expressions (A) by the following symbolical ex-

pressions for the disturbance, where k is put for 27r/X, so that

kv = k'v
;

y Qje k(vt-lx-nz)'J'-i )

Y = & ^(vt-lx+nz) V^T,

y = tx - n'*)VTa*
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In these expressions, if each exponential of the form be re-

placed by cos JP -}- ^/
(— 1) sinP, the real part of the expressions

•will agree "with (A), and therefore will satisfy the equations of the

problem. The coefficients of V(“ 1) in imaginary part will be

derived from the real part by writing t *+ X/4w for t
3
and therefore

will form a system satisfying the same equations, since the form of

these equations is supposed in no way to depend on the origin of

the time
;
and since the equations are linear they will be satisfied

by the complete expressions (B).

Suppose now l' to become greater than 1, so that n' becomes

± v V(— 1)- Whichever sign .we take, the real and imaginary

parts of the expressions (B), which must separately satisfy the

equations of motion and the equations of condition, will represent

two possible systems of waves
;
but the upper sign does not corre-

spond to the problem, for the reason already mentioned, so that we

must use the lower sign. At the same time that ri becomes

v 1), let a
,
a

y,
a' become

pe*^, pJ
py' vCT respectively :

then we have the symbolical system

Y = pe~ d
I

V
J
= . eJc(

-
vt~ te+nz) i

(Q,

Y = pe' 6'^

.

of which the real part

Y = p cos { Tc (vt — lx— nz) — '&}, 1

F, = p, cos {k(vt — lx + nz) — 6], > (D)

V'= p'e-^ cos [1c fit - Vx) - 9’}, J

forms the system required.

As I shall frequently have occasion to allude to a disturbance

of the kind expressed by the last of equations (D), it will be con-

venient to have a name for it, and I shall accordingly call it a

superficial undulation

.

4. The interpretation of our results is not yet complete, inas-

much as it remains to consider -what is meant by V'. When the
vibrations are perpendicular to the plane of incidence there is no
difficulty. In this case, whether the angle of incidence be greater

or less than the critical angle, V' denotes a displacement, or
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else a velocity, perpendicular to the plane of incidence. When
the vibrations are in the plane of incidence, and the angle of

incidence is less than the critical angle, V' denotes a displacement

or velocity in the direction of a line lying in the plane xz
y
and

inclined at angles 7r — i', — (J7r — %) to the axes of x, z
y % being

the angle of refraction. But when the angle of incidence

exceeds the critical angle there is no such thing as an angle of

refraction, and the preceding interpretation fails. Instead there-

fore of considering the whole vibration F', consider its resolved

parts VJ, Vz

'

in the direction of the axes of x
y
z. Then when the

angle of incidence is less than the critical angle, we have

VJ = -n'V' =- cos % . V
\

V' = I'V' = sin i' . V\

V being given by (A), and being reckoned positive in that direc-

tion which makes an acute angle with the positive part of the

axis of z. When the angle of incidence exceeds the critical angle,

we must first replace the coefficient of V in VJ, namely — n, by

/e47r ^“b and then, retaining v for the coefficient, add to the

phase, according to what was explained in the preceding article.

Hence, when the vibrations take place in the plane of inci-

dence, and the angle of incidence exceeds the critical angle, F'

in (D) must be interpreted to mean an expression from which the

vibrations in the directions of x, z may be obtained by multiplying

by v\ 1! respectively, and increasing the phase in the former case

by \ir. Consequently, so far as depends on the third of equations

(D), the particles of ether in the second medium describe small

ellipses lying in the plane of incidence, the semi-axes of the

ellipses being in the directions of x
,
z, and being proportional to

v
y
U, and the direction of revolution being the same as that in

which the incident ray would have to revolve in order to diminish

the angle of incidence.

Although the elliptic paths of the particles lie in the plane of

incidence, that does not prevent the superficial vibration just con-

sidered from being of the nature of transversal vibrations. For it

is easy to see that the equation

+ 0
dx dz

is satisfied
;
and this equation expresses the condition that thore
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is no change of density, which is the distinguishing characteristic

of transversal vibrations.

5. When the vibrations of the incident light take place in the

plane of incidence, it appears from investigation that the equa-

tions of condition relative to the surface of separation of the two

media cannot be satisfied ‘by means of a system of incident, re-

flected and refracted waves, in which the vibrations are trans-

versal. If the media be capable of transmitting normal vibrations

with velocities comparable with those of transversal vibrations,

there will be produced, in addition to the waves already men-

tioned, a series of reflected and a series of refracted waves in

which the vibrations are normal, provided the angle of incidence

be less than either of the two critical angles corresponding to the

reflected and refracted normal vibrations respectively. It has

been shown however by Green, in a most satisfactory manner, that

it is necessary to suppose the velocities of propagation of normal

vibrations to be incomparably greater than those of transversal

vibrations, which comes to the same thing as regarding the ether

as sensibly incompressible
;

so that the two critical angles men-

tioned above must be considered evanescent*. Consequently the

reflected and refracted normal waves are replaced by undulations

of the kind which I have called superficial. Now the existence of

these superficial undulations does not affect the interpretation

which has been given to the expressions (A) when the angle of

incidence becomes greater than the critical angle corresponding to

the refracted transversal wave
;

in fact, so far as regards that

interpretation, it is immaterial whether the expressions (A) satisfy

the linear equations of motion and condition alone, or in con-

junction with other terms referring to the normal waves, or

rather to the superficial undulations which are their represen-

tatives. The expressions (D) however will not represent the

whole of the disturbance in the two media, hut only that part

of it which relates to the transversal waves, and to the superficial

undulation which is the representative of the refracted tranversal

wave.

6. Suppose now that in the expressions (A) n becomes imagi-

nary, n' remaining real, or that n and n' both become imaginary.

* Cambridge Philosophical Transactions
,
Yol. vir. p. 2,
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The former case occurs in the theory of ISTewton’s Rings when
the angle of incidence on the surface of the second medium be-

comes greater than the critical angle, and we are considering the

superficial undulation incident on the third medium : the latter

case would occur if the third medium as well as the second were of

lower refractive power than the first, and the angle of incidence on

the surface of the second were greater than either of the critical

angles corresponding to refraction out of the first into the second,

or out of the first into the third. Consider the case in which n
becomes imaginary, n' remaining real

;
and let V(Z

2 — 1) = v. Then
it maybe shown as before that we must put — and not

v (— 1), for n
;
and using p, 0 in the same sense as before, we get

the symbolical system,

Y = pe~® #
g)e(vt-lx) V-i^

Y = p'6
-e f ^~

1

# €V(v't~rx-n'z)

to which corresponds the real system

Y = pe~ 1ci,z cos {lc (vt — lx) — #}, ’j

Y ss pekvz cos [k (vt - lx) — 0
y },

i (F).

F = //cos \lc (y't—l'x— n'z)—0'}J

When the vibrations take place in the plane of incidence,

V and V
t
in these expressions must be interpreted in the same

way as before. As far as regards the incident and reflected super-

ficial undulations, the particles of ether in the first medium, will

describe small ellipses lying in the plane of incidence. The ellipses

will be similar and similarly situated in the two cases
; but the

direction of revolution will be in the case of the incident undula-

tion the same as that in which the refracted ray would have to

turn in order to diminish the angle of refraction, whereas in the

reflected undulation it will be the opposite.

It is unnecessary to write down the formulae which apply to

the case in which n and n both become imaginary.

7. If we choose to employ real expressions, such as (D) and

(F), we have this general rule. When any one of the undula-

tions, incident, reflected, or refracted, becomes superficial, remove

z from under the circular function, and insert the exponential
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e~ 7cvz
3 elcvz

) or according as the incident, reflected, or re-

fracted undulation is considered. At the same time put the

coefficients, which become imaginary, under the form

p {cos 9 ± V (— 1) sin 0],

the double sign corresponding to the substitution of

± v V (
-

1), or ± v J (- 1) for n or ri,

retain the modulus p for coefficient, and subtract 9 from the

phase.

It will however be far more convenient to employ symbolical

expressions such as (B). These expressions will remain applicable

without any change when n or n' becomes imaginary : it will only

be necessary to observe to take

± v sj ( — 1), or ± v V C 1)

with the negative sign. If we had chosen to employ the expres-

sions (B) with the opposite sign in the index, which would have

done equally well, it would then have been necessary to take the

positive sign.

8. We are now prepared to enter on the regular calculation of

the intensity of the central spot
;
but before doing so it will be

proper to consider how far we are justified in omitting the

consideration of the superficial undulations which, when the vibra-

tions are in the plane of incidence, are the representatives of normal

vibrations. These undulations may conveniently be called normal

superficial undulations, to distinguish them from the superficial

undulations expressed by the third of equations (D), or the first

and second of equations (F), which may be called transversal

The former name however might, without warning, be calculated

to carry a false impression
;

for the undulations spoken of are not

propagated by way of condensation and rarefaction
;
the disturb-

ance is in fact precisely the same as that which exists near the

surface of deep water when a series of oscillatory waves is propa-

gated along it, although the cause of the propagation is extremely

different in the two cases.

Now in the ordinary theory of Newton’s Rings, no account is

taken of the normal superficial
t
undulations which may be sup-

posed to exist
;
and the result so obtained from theory agrees very
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well with observation. When the angle of incidence passes through
the critical angle, although a material change takes place in the

nature of the refracted transversal undulation, no such change
takes place in the case of the normal superficial undulations : the
critical angle is in fact nothing particular as regards these undu-
lations. Consequently, we should expect the result obtained from
theory when the normal superficial undulations are left out of con-

sideration to agree as well with experiment beyond the critical

angle as within it.

9. It is however one thing to show why we are justified in

expecting a near accordance between the simplified theory and
experiment, beyond the critical angle, in consequence of the
observed accordance within that angle; it is another thing to show
why a near accordance ought to he expected both in the one case
and in the other. The following considerations will show that the
effect of the normal superficial undulations on the observed
phenomena is most probably very slight.

At the point of contact of the first and third media, the reflec-

tion and refraction will take place as if the second medium were
nemoved, so that the first and third were in contact throughoiit.
TSTow Fresnel’s expressions satisfy the condition of giving the same
intensity for the reflected and refracted light whether we suppose
the refraction to take place directly out of the first medium into
the third, or take into account the infinite number of reflections

which take place when the second medium is interposed, and then
suppose the thickness of the interposed medium to vanish. Conse-
quently the expression we shall obtain for the intensity by neg-
lecting the normal superficial undulations will be strictly correct
for the point of contact, Fresnel’s expressions being supposed cor-
rect, and of course will be sensibly correct for some distance round
-that point. Again, the expression for the refracted normal su-
perficial undulation will contain in the index of the exponential— klz, in place of —hj (l

2 -v2
/v'

2

) z, which occurs in the expres-
sion for the refracted transversal superficial undulation; and there-
fore the former kind ofundulation will decrease much more rapidly,
in receding from the surface, than the latter, so that the effect
of the former will he insensible at a distance from the point of
contact at which the effect of the latter is still important. If wo
combine these two considerations, we can hardly suppose the

S. n.
. 5
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effect of the normal superficial undulations at intermediate points

to "be of any material importance.

10. The phenomenon of Newton’s Kings is the only one in

which I see at present any chance of rendering these undulations

sensible in experiment : for the only way in which I can conceive

them to be rendered sensible is, by their again producing trans-

versal vibrations; and in consequence of the rapid diminution of

the disturbance on receding from the surface, this can only happen

when there exists a second reflecting surface in close proximity

with the first. It is not my intention to pursue the subject further

at present, but merely to do for angles of incidence greater than

the critical angle what has long ago been done for smaller angles,

in which case light is refracted in the ordinary way. Before quitting

the subject however I would observe that, for the reasons already

mentioned, the near accordance of observation with the expression

for the intensity obtained when the normal superficial undula-

tions are not taken into consideration cannot be regarded as any

valid argument against the existence of such undulations.

11. Let Newton’s Rings be formed between a prism and a

lens, ora second prism, of the same kind of glass. Suppose the

incident light polarized, either in the plane of incidence, or in a

plane perpendicular to the plane of incidence. Let the coefficient

of vibration in the incident light be taken for unity; and, accord-

ing to the notation employed in Airy’s Tract, let the coefficient be

multiplied by b for reflection and by c for refraction when light

passes from glass into air, and by e for reflection and / for refrac-

tion when light passes from air into glass. In the case contem-

plated b
,
c

, e,f become imaginary, but that will be taken into ac-

count further on. Then the incident vibration will be represented

symbolically by
gk [vt~ lx - nz) V“"f

according to the notation already employed; and the reflected and

refracted vibrations will be represented by

Jje
k (vt-Ix+nz)

Cq-Wz
^ e

7/ (v't- Vx) V-T

Consider a point at which the distance of the pieces of glass is

D\ and, as in the usual investigation, regard the plate of air about
that point as bounded by parallel planes. When the superficial
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undulation represented by the last of the preceding expressions is

incident on the second surface, the coefficient of vibration -will be-

come cq
, q being put for shortness in place of and the re-

flected and refracted vibrations will be represented by

cqa^H^v % (v t— l x) V 1

cqfe1c(
'
vt~

9

z being now measured from the lower surface. It is evident that

each time that the undulation passes from one surface to the other

the coefficient of vibration will be multiplied by q, while the phase

will remain the same. Taking account of the infinite series of

reflections, we get for the symbolical expression for the reflected

vibration

[b + cefq
2
(1 -f e*(f + -f . .

.)} e
k (vt

~ lx+nz^

.

Summing the geometric series, we get for the coefficient of the

exponential

b + cefcf

1 — e*2*

'

Now it follows from Fresnel’s expressions that

h = -e
9 cf=l-e2

*,

These substitutions being made in the coefficient, we get for the

symbolical expression for the reflected vibration

Jc (vt- Ix+nzW-

1

1 - q
2
b
2

Let the coefficient, which is imaginary, be put under the form

p {cos^-J-\/(— 1) sin then the real part of the whole expres-

sion, namely

p cos [Jc {vt — lx + nz) +

will represent the vibration in the reflected light, so that p
2
is the

intensity, and ^ the acceleration of phase.

12. Let i be the angle of incidence on the first surface of the

plate of air, p, the refractive index of glass; and let X now denote

the length of wave in air. Then in the expression for q

kv= 2~J7A
1 .

* I have proved these equations in a very simple manner, without any reference

to Fresnel’s formulas, in a paper which will appear in the next number of the

Cambridge and Dublin Mathematical Journal [p. 89 of the present volume].

5—2
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In the expression for b we must, according to Art. 2, take the

imaginary expression for cos i with the negative sign. We thus

get for light polarized in the plane of incidence (Airy’s Tract,

p. 862, 2nd edition*), changing the sign of J— l,

6 = cos 20 -f 1 sin 20
,

where

(2) .

fl COS %
w

Putting (7 for the coefficient in the expression (G), we have

c=w _
h
~l-ih (1 - q’) cos 20 -J- 1 (1 + <f)

sin 20

_ (1 - g
2

) {(1 - <f) cos 29 +JZI (1 + f) sin 20} _

whence

where

If we take p positive, as it will he convenient to do, we must
take -*fr so that cos ifs and cos 29 may have the same sign. Hence
from (3) sin i/o must be positive, since sin 29 is positive, inasmuch
as 9 lies between 0 and t. Hence, of the two angles lying be-
tween -7T and 7r which satisfy (2), we must take that which lies

between 0 and tt-

(1-2T +V sm2
2d

tan ^ 20 (3),

P
2 = (l-??

q — s

(1 — g
2

)

2 -Mg2
sin

2 20'

2irD
,

-V^siaH-\

•(4),

.(5).

For light polarized perpendicularly to the plane of incidence,
we have meroly to substitute cj> for 0 in the equations (3) and (4),
where

'tan
cos i (6).

The value of q does not depend on the nature of the polarization.

* Ifc Airy speaks of “Titrations perpendicular to the plane of meidence,’’ anc
Tibrations parallel to the plane of incidence,” adopting the theory of Fresnel ; bni

ftere is nothing in this paper which requires ns to enter into the question whethei

^kriration.

118 “ P 6 POlariZed Kght are in 01 ^^dknlar to the plane o:
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13. For the transmitted light we have an expression similar

to (G), with — nz in place of nz, and a different coefficient G,

where

C
l
= cqf(1 + £<i + £<£+.•) = go/ _ g{1 — &

8

) _ q (
b'

1 - i)
~~

1 — (fb
2

b"
1 — <fb

When the light is polarized in the plane of incidence we have

G
- . 2g.sin 26

'

~ (1 - g
2

)
cos 20 - V - 1 (1 + q

*)
sin 20

— sin 2d {(1 + rf) sin 20 — J — 1 (
1 — g

2

)
cos 20}

.—
(1 — g

2

)

2 + ig2
sin

2 20
’

so that if^ and pt
refer to the transmitted light we have

- In t cot 20

.

4iq
2
sin

2 20
P, (l~q2y+4iq2

sin
2 29

'

.(3),

.(9).

If we take p t
positive, as it will be supposed to be, we must

take y(r
y
such that cos may be positive

;
and therefore, of the

two angles lying between — nr and nr which satisfy (8), we must

choose that which lies between — \nr and + \tt. Hence, since from

(3) and (8) yj/
/
is of the form ^ + \nr -f nnr, n being an integer, we

must take ^ ^ — \nr.

For light polarized perpendicularly to the plane of incidence

we have only to put <£ for 0. It follows from (4) and (9) that the

sum of the intensities of the reflected and transmitted light is

equal to unity, as of course ought to be the case. This renders it

unnecessary to discuss the expression for the intensity of the trans-

mitted light.

14. Taking the expression (4) for the intensity of the reflected

light, consider first how it varies on receding from the point of

contact.

As the point of contact JD = 0, and therefore from (5) q=l, and

therefore p
2= 0, or there is absolute darkness. On receding from

the point of contact q decreases, but slowly at first, inasmuch as D
varies as r

2

,
r being the distance from the point of contact. It

follows from (4) that the intensity p
2
varies ultimately as r

4
,
so
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that it increases at first with, extreme slowness. Consequently

tie darkness is, as fax as sense can decide, perfect for some

distance round the point of contact. Further on q decreases more

rapidly, and soon becomes insensible. Consequently the intensity

decreases, at first rapidly, and then slowly again as it approaches

its limiting -value 1, to which it soon becomes sensibly equal. All

this agrees with observation.

15. Consider next the variation of intensity as depending on

the colour. The change in 9 and cj> in passing from one colour to

another is but small, and need not here be taken into account:

the quantity whose variation it is important to consider is q. Now
it follows from (5) that q changes the more rapidly in receding

from the point of contact the smaller be X. Consequently the

spot must be smaller for blue light than for red ;
and therefore

towards the edge of the spot seen by reflection, that is beyond the

edge of the central portion of it, which is black, there is a pre-

dominance of the colours at the blue end of the spectrum
;
and

towards the edge of the bright spot seen by transmission the

colours at the red end predominate. The tint is more conspicuous

in the transmitted, than in the reflected light, in consecjuence of

the quantity of white light reflected about the edge of the spot.

The separation of colours is however but slight, compared with

what takes place in dispersion or diffraction, for two reasons.

First, the point of minimum intensity is the same for all the
colours, and the only reason why there is any tint produced is,

that the intensity approaches more rapidly to its limiting value 1

in the case of the blue than in the case of the red. Secondly, the

same fraction of the incident light is reflected at points for which
i) xX, and therefore r oc */\

;
and therefore, on this account also,

the separation of colours is less than in diffraction, where the
colours are arranged according to the values of X, or in dispersion,

where they are arranged according to values of X"2
nearly. These

conclusions agree with observation. A faint blueish tint may be
perceived about the dark spot seen hy reflection

;
and the fainter

portions of the bright spot seen by transmission are of a decided
reddish brown.

16. Let us now consider the dependance of the size of the
spot on the nature of the polarization, let $ be the ratio of the
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intensity of the transmitted light to that of the reflected; .$1? s
2 ,

the particular values of s belonging to light polarized in the plane

of incidence and to light polarized perpendicularly to the plane of

incidence respectively
;
then

__
4r/

2
sin

2
20 _ 4<fsin

2
2<£

Si -p_^ ,
s
a - ^ _ qy,

m
Now according as s is greater or less, the spot is more or less

conspicuous
;
that is, conspicuous in regard to extent, and intensity

at some distance from the point of contact
;
for in the immediate

neighbourhood of that point the light is in all cases wholly trans-

mitted. Very near the critical angle we have from (10) s
2 = /^

4
s
l9

and therefore the spot is much more conspicuous for light polarized

perpendicularly to the plane of incidence than for light polarized

in that plane. As i increases the spots seen in the two cases

become more and more nearly equal in magnitude : they become

exactly alike when i = where

2
sin l = —

—

2 .

1 + p*

When i becomes greater than i the order of magnitude is

reversed; and the spots become more and more unequal as i

increases. When i= 90° we have s
x
= so that the inequality

becomes very great. This however must be understood with

reference to relative, not absolute magnitude
;
for when the angle

of incidence becomes very great both spots become very small.

I have verified these conclusions by viewing the spot through

a rhomb of Iceland spar, with its principal plane either parallel or

perpendicular to the plane of incidence, as well as by using a

doubly refracting prism
;
but I have not attempted to determine

experimentally the angle of incidence at which the spots are

exactly equal. Indeed, it could not be determined in this way
with any precision, because the difference between the spots is

insensible through a considerable range of incidence.

17. ’ It is worthy of remark that the angle of incidence t at

which the spots are equal, is exactly that at which the difference

of acceleration of phase of the oppositely polarized pencils, which

arises from total internal reflection, is a maximum.
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When i = l we have

sin 26= sin 2
<f>
-

;
whence cot 5 = tan cf>

= (11)

;

/i +

1

. , a+^Vd-gy
and p

=
(iTTra-g?

+

16/^y
’

where g = e"
W^+i W

If we determine in succession the angles 0, from the equa-

tions cot 0 = /jb, tan f= q, tan rj = sin 20 tan 2f,

we have pf = 1 - p
2 = £ versin 277.

The expression for the intensity may be adapted to numerical

computation in the same way for any angle of incidence, except

that 9 or <j> must be determined by (2) or (6) instead of (11), and

q by (5) instead of (12).

18. When light is incident at the critical angle, which I shall

denote by 7, the expression for the intensity takes the form 0/0.

Putting for shortness sin
2
i — 1)— w,

we have ultimately

q — 1 — w, tan 9 - 9 =

and we get in the limit

w w
^cos i

Jfj? - 1
, <j> = f/9 ;

according as the light is polarized in or perpendicularly to the

plane of incidence. The same formulae may be obtained from the

expression given at page 304 of Airy’s Tract
,
which gives the

intensity when i < 7, and which like (4) takes the form 0/0 when i

becomes equal to 7, in which case e becomes equal to — 1.

19. . When i becomes equal to 7, the infinite series of Art. 11
ceases to be convergent : in fact, its several terms become ulti-

mately equal to each other, while at the same time the coefficient

by which the series is multiplied vanishes, so that the whole takes
the form 0 x 00 . The same remark applies to the series at page
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303 of Airy’s Tract. If we had included the coefficient in each

term of the series, we should have got series which ceased to be

convergent at the same time that their several terms vanished.

Now the sum of such a series may depend altogether on the point

of view in which it is regarded as a limit. Take for example the

convergent infinite series

2$/ sin ?/

f(xy y) = & sin 2/ + ^ #
3
sin 3j/ + -g- &5

sin 5y + ... = \ tan*”
1

^
,

where x is less than 1 ,
and may he supposed positive. When x

becomes 1 and y vanishes f (x} y)
becomes indeterminate, and its

limiting value depends altogether upon the order in which we

suppose x and y to receive their limiting values, or more generally

upon the arbitrary relation which we conceive imposed upon the

otherwise independent variables x and y as they approach their

limiting values together. Thus, if we suppose y first to vanish,

and then x to become 1, we have /(a?, y) = 0 ; but if we suppose x

first to become 1 ,
and then y to vanish, f (x, y) becomes ± ?r/4

,

H- or — according as y vanishes positively or negatively. Hence in

the case of such a series a mode of approximating to the value of

x or y,
which in general was perfectly legitimate, might become

inadmissible in the extreme case in which x = 1, or nearly = 1.

Consequently, in the case of Newton’s Rings when is

extremely small, it is no longer safe to neglect the defect of paral-

lelism of the surfaces. Nevertheless, inasmuch as the expression

(4), which applies to the case in which i > 7, and the ordinary

expression .which applies when i <7, alter continuously as i alters,

and agree with
(
13

)
when i = 7, we may employ the latter expres-

sion in so far as the phenomenon to be explained alters continu-

ously as i alters. Consequently we may apply the expression
(
13)

to the central spot when i= 7, or nearly = 7, at least if we do not

push the expression beyond values of corresponding to the limits

of the central spot as seen at other angles of incidence. To explain

however the precise mode of disappearance of the rings, and to

determine their greatest dilatation, we should have to enter on a

special investigation in which the inclination of the surfaces should

be taken into account.

20. I have calculated the following Table of the intensity of

the transmitted light, taking the intensity of the incident light at

100. The Table is calculated for values of D increasing by X/4,
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and. for three angles of incidence, namely, the critical angle, the

angle t before mentioned, and a considerable angle, for which I

have taken 60
11

. I have supposed fi = 1*63, which is about the

refractive index for the brightest part of the spectrum in the case

of flint glass. This value of ji gives y = 37° 51', i = 42° 18'. The

numerals I., II. refer to light polarized in and perpendicularly to

the plane of incidence respectively.

21. A Table such as this would enable us to draw the curve

of intensity, or the curve in which the abscissa is proportional to

the distance of the point considered from the point of contact, and
the 'ordinate proportional to the intensity. For this purpose it

would only be requisite to lay down on the axis of the abscissae,

on the positive and negative sides of the origin, distances propor-

tional to the square roots of the numbers in the first column, and
to take for ordinates lengths proportional to the numbers in one of
the succeeding columns. To draw the curve of intensity for i — i

or for i— 60°, the table ought to have been calculated with smaller
intervals between the values of 1) ; but the law of the decrease of
the intensity cannot be accurately observed.

22. From the expression (13) compared with (4), it will he
seen that the intensity decreases much more rapidly, at some
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distance from the point of contact, when i is considerably greater

than 7 than when i = 7 nearly. This agrees with observation.

What may be called the ragged edge of the bright spot seen by

transmission is in fact much broader in the latter case than in the

former.

When i becomes equal to 90° there is no particular change in

the value of q, but the angles 6 and
<f>
become equal to 90°, and

therefore sin 29 and sin 2<p vanish, so that the spot vanishes.

Observation shows that the spot becomes very small when i

becomes nearly equal to 90°.

23. Suppose the incident light to be polarized in a plane

making an angle a with the plane of'* incidence. Then at the

point of contact the light, being transmitted as if the first and

third media formed one uninterrupted medium, will be plane

polarized, the plane of polarization being the same as at first.

At a sufficient distance from the point of contact there is no

sensible quantity of light transmitted. At intermediate distances

the transmitted light is in general elliptically polarized, since

it follows from
(8) and the expression thence derived by writing

</> for 6 that the two streams of light, polarized in and perpen-

dicularly to the plane of incidence respectively, into which the

incident light may be conceived to be decomposed, are unequally

accelerated or retarded. At the point of contact, where q
= 1,

these two expressions agree in giving ^ = 0. Suppose now

that the transmitted light is analyzed, so as to extinguish

the light which passes through close to the point of contact.

Then the centre of the spot will be dark, and beyond a certain

distance all round there will be darkness, because no sensible

quantity of light was incident on the analyzer
;
but at interme-

diate distances a portion of the light incident on the analyzer will

be visible. Consequently the appearance will be that of a lumi-

nous ring with a perfectly dark centre.

24. Let the coefficient of vibration in the incident light be

taken for unity
;
then the incident vibration may be resolved into

two, whose coefficients are cos a
,
sin a, belonging to light polarized

in and perpendicularly to the plane of incidence respectively. The
phases of vibration will be accelerated by the angles and

the .coefficients of vibration will be multiplied by p,, p u7 if p„
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are what f, p, in Art. (13) become when <p is put for 0. Hence

we may take

p t
cos a . cos

pu
sin a . cos

Y (*< -/“»')+ "ft >

'277

(vt — pod)

sin a cos

to represent the vibrations which compounded together make up

the transmitted light, x being measured in the direction of propa-

gation. The light being analyzed in the way above mentioned, it

is only the resolved parts of these vibrations in a direction perpen-

dicular to that of the vibrations in the incident light which are

preserved. We thus get, to express the vibration with which we

are concerned,

a jp, cos
(y

(«* “ FO + f,)
-/>„«»(?£ >

which gives for the intensity
(
I

)
at any point of the ring

I = | sin
2
2a {(p ,

cos p t,
cos ^„)

2j
r (p,

sin pu sin ..(1^),

= isin22a {pf +p*-2p tP/t cos^,,-^,)}.

Let Pe , Qa be respectively the real part of the expression at the

second side of (7) and the coefficient of V (““*)> ari(l ^ Q<l>

what P9 , Qe become when <j> is put for 6. Then we may if we

please replace (14) by

, flB>.

The ring is brightest, for a given angle of incidence, when

a = 45°. When i= i, the two kinds of polarized light are trans-

mitted in the same proportion; but it does not therefore follow

that the ring vanishes, inasmuch as the change of phase is different

in the two cases. In fact, in this case the angles cf>, 9 are comple-

mentary
;

so that cot 2</>, cot 26 are equal in magnitude but oppo-

site in sign, and therefore from (8) the phase in the one case is

accelerated and in the other case retarded by the angle

T5r)-

It follows from (14) that the ring cannot vanish unless

pj eos yjr
r
= pu cos ty,,, and pt

sin - p /t
sin This requires
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that p* = p*
y
which is satisfied only when i = c

y
in which case

as we have seen the ring does not vanish. Consequently a

ring is formed at all angles of incidence
;

hut it should be

remembered that the spot, and consequently the ring, vanishes

when i becomes 90°.

25. "When % = y, the expressions for Pe, Qe> take the form 0/0,

and we find, putting for shortness nrD/\ =jp,

P fr’-ir p
'-f+Qf-ip’ * ?+!*&- XT'

P(/S- l)-i
0 _ pittf-l)-*

4*~ r+^-ir1 ’

If we take two subsidiary angles %, co, determined by the

equations

J/ju — 1 = tan X — V? tan a>,

we get

Pe = cos
2

%, P^ = cos
2
CO,

= — sin
;)£

cos — sin cos a>.

Substituting in (15) and reducing we get, supposing a = 45°,

J= ^versin (2^ — 2co) (16).

When i= i, cos 2cf> = — cos 20, sin 2<£ = sin 20 ;
and therefore

P^ = Pd, ,
which when a= 45° reduces (15) to 1 =

If we determine the angle vr from the equation

1 — <f= 2q sin 20 tan 'nr, or tan 'or = cot 2£. cosec 20,

we get

I~ l sin
2
2si . cos

2 20 (17).

In these equations

log. tan cot 0

26. The following Table gives the intensity of the ring for

the two angles of incidence % = y and i = £, and for values of D
increasing by X/10. The intensity is calculated by the formulae

(16) and (17). The intensity of the incident polarized light ‘is

taken at 100, and fi is supposed equal to 1*63, as before.
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D
X

^
II

I
i—i

D
X n

* 0 0 • 0 0 -o 1 * 6 1 *4
• 1 1 *3 3 *2 1 * 7 1 *2
* 2 3 ’ 5 5 * 1 1 ‘ 8 1 * 1

*3 4 * 8 3 * 6 1 • 9 1 *0
•4 5 * 1 1 *9 2*0 •9
* 5 4 * 9 • 9 2 * 1 * 9
• 6 4 * 5 •4 2 *2 *8
* 7 4 • 0 * 2 2 *3 *7
* 8 3 * 6 • 1 2*4 •7
• 9 3 * 1 • 0 2 * 5 •6

1 • 0 2 * 8 2 * 6 *6

1 • 1 2 * 4 2 * 7 *5

1 • 2 2 * I 2 * 8 *5

1 * 3 1 • 9 2 * 9 * 5

1 * 4
1 * 5

1 • 7

1 *5
3 * 0 •4

The column for i= 7 may be continued with sufficient

accuracy, by taking I to vary inversely as the square of the num-
ber in the first column.

27. I have seen the ring very distinctly by viewing the light

transmitted at an angle of incidence a little greater than the

critical angle. In what follows, in speaking of angles of position, I

shall consider those positive which are measured in the direction

of motion of the hands of a watch, to a person looking at the

light. The plane of incidence being about 45° to the positive side

of the plane of primitive polarization, the appearance presented as

the analyzer (a Nicol’s prism) was turned, in the positive direction,

through the position in which the light from the centre was extin-

guished, was as follows. On approaching that position, in addi-

tion to the general darkening of the spot, a dark ring was observed

to separate itself from the dark field about the spot, and to move
towards the centre, where it formed a broad dark patch, sur-

rounded by a rather faint ring of light. On continuing to turn,

the ring got brighter, and the central patch ceased to be quite

black. The light transmitted near the centre increased in intensity

till the dark patch disappeared: the patch did not break up into

a dark ring travelling outwards.

On niaking the analyzer revolve in the contrary direction, the

same appearances were of course repeated in a reverse order: a
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dull central patch was seen, which became darker and darker till

it appeared quite black, after which it broke up into a dark ring

which travelled outwards till it was lost in the dark field surround-

ing the spot. The appearance was a good deal disturbed by the

imperfect annealing of the prisms. When the plane of incidence

was inclined at an angle of about — 45° to the plane of primitive

polarization, the same appearance as before was presented on

reversing the direction of rotation of the analyzer.

28. Although the complete theoretical investigation of the

moving dark ring would require a great deal of numerical calcu-

lation, a general explanation may very easily be given. At the

point of contact the transmitted light is plane polarized, the plane

of polarization being the same as at first*. At some distance

from the point of contact, although strictly speaking the light is

elliptically polarized, it may be represented in a general way by

plane polarized light with its plane of polarization further removed

than at first from the plane of incidence, in consequence of the

larger proportion in which light polarized perpendicularly to the

plane of incidence is transmitted, than light polarized in that

plane. Consequently the transmitted light may be represented

in a general way by plane polarized, with its plane of polarization

receding from the plane of incidence on going from the centre

outwards. If therefore we suppose the position of the plane of

incidence, and the direction of rotation of the analyzer, to be those

first mentioned, the plane of polarization of light transmitted by

the analyzer will become perpendicular to the plane of polarization

of the transmitted light of the spot sooner towards the edge of the

spot than in the middle. The locus of the point where the two

planes are perpendicular to each other will in fact be a circle, whose

radius will contract as the analyzer turns round. When the

analyzer has passed the position in which its plane of polarization

is perpendicular to that of the light at the centre of the spot, the

inclination of the planes of polarization of the analyzer and of the

transmitted light of the spot decreases, for a given position of the

analyzer, in passing from the centre outwards
;
and therefore there

is formed, not a dark ring travelling outwards as the analyzer turns

round, but a dark patch, darkest in the centre, and becoming
* The rotation of the plane of polarization due to the refraction at the surfaces

at which the light enters the first prism and quits the second is not here mentioned,

as it has nothing to do with the phenomenon discussed.
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brighter, and therefore less and less conspicuous, as the analyzer

turns round. The appearance will of course he the same when the

plane of incidence is turned through 90°, so as to be equally in-

clined to the plane of polarization on the opposite side, provided

the direction of rotation of the analyzer be reversed.

29. The investigation of the intensity of the spot formed

beyond the critical angle when the third medium is of a

different nature from the first, does not seem likely to lead to

results of any particular interest. Perhaps the most remark-

able case is that in which the second and third media are both

of lower refractive power than the first, and the angle of inci-

dence is greater than either of the critical angles for refraction

out of the first medium into the second, or out of the first

into the third. In this case the light must he wholly reflected;

but the acceleration of phase due to the total internal reflection

will alter in the neighbourhood of the point of contact. At that

point it will be the same as if the third medium occupied the

place of the second as well as its own
;
at a distance sufficient to

render the influence of the third medium insensible, it will be the

same as if the second medium occupied the place of the third as

well as its own. The law of the variation of the acceleration from

the one to the other of its extreme values, as the distance from the

point of contact varies, would result from the investigation. This

law could be put to the test of experiment by examining the

nature of the elliptic polarization of the light reflected in the

neighbourhood of the point of contact when the incident light is

polarized at an azimuth of 45°, or thereabouts. The theoretical

investigation does not present the slightest difficulty in principle,

but would lead to rather long expressions
;
and as the experiment

would be difficult, and is not likely to be performed, there is no

occasion to go into the investigation.

30. In viewing the spot formed between a prism and a

lens, I was struck with the sudden, or nearly sudden disappearance

of the spot at a considerable angle of incidence. The cause of

the disappearance no doubt was that the lens was of lower re-

fractive power than the prism, and that the critical angle was

reached which belongs to refraction out of the prism into the lens.

Before disappearing, the spot became of a bright sky blue, which
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shows that the ratio of the refractive index of the prism to that of

the lens was greater for the blue rays than for the red. As the

disappearance of the spot can be observed with a good deal of

precision, it may be possible to determine in this way the refrac-

tive index of a substance of which only a very minute quantity

can be obtained. The examination of the refractive index of the

globule obtained from a small fragment of a fusible mineral might

afford the mineralogist a means of discriminating between one

mineral and another. For this purpose a plate, which is what a

prism becomes when each base angle becomes 90°, would probably

be more convenient than a prism. Of course the observation is

possible only when the refractive index of the subitance to be

examined is less than that of the prism or plate.

S. II. 6



[From the Philosophical Magazine, Yol. xxxrv. p. 52, {January, 1849.)]

On some Points in the Received Theory of Sound*.

I proceed now to notice the apparent contradiction at which

Professor Challis lias arrived by considering spherical waves, a

contradiction which it is the chief object of this communication to

consider. The only reason why I took no notice of it in a former

communication was, that it -was expressed with such brevity by
Professor Challis (Yol. XXXII. p. 497), that I did not perceive bow
the conclusion that the condensation varies inversely as the square

of the distance was arrived at. On mentioning this circumstance

to Professor Challis, he kindly explained to me his reasoning,

•which he has since stated in detail (Yol. xxxiil. p. 463) f.

* The beginning and end of this Paper are omitted, as being merely contro-
versial, and of ephemeral interest.

t The objection is put in two slightly different forms in the two Papers. The
substance of it may be placed before the reader in a few words.

Conceive a wave of sound of small disturbance to b© travelling outwards from
a centre, the disturbance being alike in all directions round the centre. Then
according to the received theory the condensation is expressed by equation (1),

where r is the distance from the centre, and a the condensation. It follows from
this equation that any phase of the wave is carried outwards with the velocity
of propagation a

,
and that the condensation varies inversely as tho distance from

the centre. But if we consider the shell of infinitesimal thickness a comprised
between spherical surfaces of radii r and r + a corrcsponding to given phases, so
that these surfaces travel outwards with the velocity a, the excess of matter in the
shell over the quantity corresponding to the undisturbed density will vary as the
condensation multiplied by the volume, and therefore as ; and as the constancy
of mass requires that this excess should be constant, $ must vary inversely m
r2 not r.

Ox instead of considering only an infinitesimal shell, consider the whole of an
outward travelling wave, and for simplicity’s sake suppose it to have travelled
so far that its thickness is small compared with its mean radius r or at, t being
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* The whole force of the reasoning rests on the tacit supposition

that when a wave is propagated from the centre outwards, any

arbitrary portion of the wave, bounded by spherical surfaces con-

centric with the bounding surfaces of the wave, may be isolated,

the rest of the wave being replaced by quiescent fluid
;
and that

being so isolated, it will continue to be propagated outwards as

before, all the fluid except the successive portions which form the

wave in its successive positions being at rest. At first sight it

might seem as if this assumption were merely an application of

the principle of the coexistence of small motions, but it is in

reality extremely different. The equations are competent to decide

whether the isolation be possible or not. The subject may be

considered in different ways
;
they will all be found to lead to the

same result*

1. "We may evidently without absurdity conceive an outward

travelling wave to exist already, without entering into the question

of its original generation
;
and we may suppose the condensation

to be given arbitrarily throughout this wave. By an outward

travelling wave, I mean one for which the quantity usually denoted

by <j> contains a function of r — at
,
unaccompanied by a function of

r 4* at, in which case the expressions for v and s will likewise con-

tain functions of r — at only. Let

r
(!)•

We are at liberty to suppose f (z) = 0, except from z~b to

z = c, where 6 and c are supposed positive
;
and we may take/' {£)

to denote any arbitrary function for which the portion from z = b

the time of travelling from the origin to the distance r. Then assuming the

expression (1), and putting the factor r outside the sign of integration, as we are at

liberty to do in consequence of the supposition made above as to the distance

the wave has travelled, we have for the quantity of matter existing at any time in

the wave beyond what would occupy the same space in the quiescent state of the

I
fluid,

44 aH*xpJf(r- at) dr-~aH

I

very nearly, or 4irpAt, putting A for the value of the integral
J/'(r-

at
)
dr taken from

the inner to the outer boundary of the wave. Hence the matter increases in

quantity with the time.

6—2
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to z- c has been isolated, the rest having been suppressed. Equa-

tion (1) gives

<£
= — a2j sdt =

r
—+ ^ (?*)> (

2 ),

(r) being an arbitrary function of r, to determine which we must

substitute the value of cj> given by (2) in the equation which <£ has

to satisfy, namely

d2 .r(p_
2
d2

. rcj>

dt
2
~ a

dr
2 W

This equation gives t]t (r) = C + Djr
t 0 and D being arbitrary

constants, whence

v = Q-^) /(r - flQ _ I> /
4

x

dr r r
2

r
2 '

Now the function /(«) is merely defined as an integral of

/' (js) dz, and we may suppose the integral so chosen as to

vanish when z — b, and therefore when z has any smaller value.

Consequently we get from (4), for every point within the sphere

which forms the inner boundary of the wave of condensation,

D
v =-p (»)•

Again, if we put ,/(c) = A, so that f(z)~A when z>c, we
have for any point outside the wave of condensation,

« = —
(6)-

The velocities expressed by (5) and (6) are evidently such

as could take place in an incompressible fluid. Now Professor

Challis’s reasoning requires that the fluid be at rest beyond the

limits of the wave of condensation, since otherwise the conclusion

cannot be drawn that the matter increases with the time. Conse-

quently we must have D = 0, A = 0 ;
but if A = 0 the reasoning at

p. 463 evidently falls to the ground.

2. We may if we please consider an outward travelling wave
which arose from a disturbance originally confined to a sphere of

radius e. At p. 463 Professor Challis has referred to Poisson's

expressions relating to this case. It should be observed that
Poisson’s expressions at page 706 of the Traitf de Mhmique
(second edition) do not apply to the whole wave from r=c£-€
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to r = at -f e, but only to the portion from r — at— e to r = at; the

expressions which apply to the remainder are those given near the

bottom of page 705. We may of course represent the condensa-

tion s by a single function 1jar
. % (r — at), where

% (-
*) =/ W ,

F
# being positive

;
and we shall have

^ = j' x to * -/to -/(0) + ^to - ^(0).

Now Poisson has proved, and moreover expressly stated at

page 706, that the functions F,f vanish at the limits of the wave;

so that/(e)=0, i? (e) = 0. Also Poisson’s equations (6) give in

the limiting case for which z = 0, f(0) + F(0) = 0, so that A = 0

as before.

3. We may evidently without absurdity conceive the velocity

and condensation to be both given arbitrarily for the instant at

which we begin to consider the motion; but then we must take

the complete integral of (3), and determine the two arbitrary

functions which it contains. We are at liberty, for example, to

suppose the condensation and velocity when t = 0 given by the

equations

r r r

from r = b to r = c, and to suppose them equal to zero for all other

values of r

;

but we are not therefore at liberty to suppress the

second arbitrary function in the integral of (3). The problem is

only a particular case of that considered by Poisson, and the

arbitrary functions are determined by his equations (6) and (8),

where, however, it must be observed, that the arbitrary functions

which Poisson denotes by f, F must not be confounded with the

given function here denoted by f which latter will appear at the

right-hand side of equations (8). The solution presents no diffi-

culty in principle, but it is tedious from the great number of cases

to be considered, since the form of one of the functions which

'

enter into the result changes whenever the value of r 4- at or of

r — at passes through either b or c, or when that of r — at passes

through zero. It would be found that unless f(b) = 0, a backward

wave sets out from the inner surface of the spherical shell contain-



86 ON SOME POINTS IN THE

ing the disturbed portion of the fluid
;
and unless /(c) = 0, a

similar wave starts from the outer surface. Hence, whenever the

disturbance can be propagated in the positive direction only, we

must have A, or /(c) -/(&), equal to zero. When a backward

wave is formed, it first approaches the centre, which in due time

it reaches, and then begins to diverge outwards, so that after the

time c/a there is nothing left but an outward travelling wave, of

breadth 2c, in which the fluid is partly rarefied and partly con-

densed, in such a manner that / rs dr taken throughout the wave,

or A
}
is equal to zero.

It appears, then, that for any outward travelling wave, or for

any portion of such a wave which can be isolated, the quantity A
is necessarily equal to zero. Consequently the conclusion arrived

at, that the mean condensation in such a wave or portion of a wave

varies ultimately inversely as the distance from the centre, proves

not to be true. It is true, as commonly stated, that the conden-

sation at corresponding points in such a wave in its successive

positions varies ultimately inversely as the distance from the

centre; it is likewise true, as Professor Challis has argued, that

the mean condensation in any portion of the wave which may be

isolated varies ultimately inversely as the square of the distance

;

but these conclusions do not in the slightest degree militate

against each other.

If we suppose b to increase indefinitely, the condensation or

rarefaction in the wave which travels towards the centre will be a

small quantity, of the order Jf
1

,
compared with that in the shell.

In the limiting case, in which b = oo
,
the condensation or rarefac-

tion in the backward travelling wave vanishes. If in the equations

of paragraph 3 we write b + x for r, bar (x) for /' (r), and then sup-

pose b to become infinite, we shall get as = a (x), v — g (,x). Con-

sequently a plane wave in which the relation v = as is satisfied

will be propagated in the positive direction only, no matter

whether / g (#) dx taken from the beginning to the end of the

wave be or be not equal to zero; and therefore any arbitrary

portion of such a wave may be conceived to be isolated, and being

isolated, will continue to travel in the positive direction only,

without sending back any wave which will be propagated in the

negative direction. This result follows at once from the equations

vhich apply directly to plane waves
;
I mean, of course, the approxi-
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mate equations obtained by neglecting the squares of small quan-

tities. It may be observed, however, that it appears from what
has been proved, that it is a property of every plane wave which is

the limit of a spherical wave, to have its mean condensation equal

to zero
;
although there is no absurdity in conceiving a plane wave

in which that is not the case as already existing, and inquiring in

what manner such a wave will be propagated.

There is another way of putting the apparent contradiction

arrived at in the case of spherical waves, which Professor Challis

has mentioned to me, and has given me permission to publish.

Conceive an elastic spherical envelope to exist in an infinite mass

of air which is at rest, and conceive it to expand for a certain time,

and then to come to rest again, preserving its spherical form and

the position of its centre during expansion. We should apparently

have a wave consisting of condensation only, without rarefaction,

travelling outwards, in which case the conclusion would follow,

that the quantity of matter altered with the time.

Now in this or any similar case we have a perfectly definite

problem, and our equations are competent to lead to the complete

solution, and so make known whether or not a wave will be propa-

gated outwards leaving the fluid about the envelope at rest, and if

such a wave be formed, whether it will consist of condensation

only, or of condensation accompanied*by rarefaction : that conden-

sation will on the whole prevail is evident beforehand, because a

certain portion of space which was occupied by the fluid is now
occupied by the envelope.

In order to simplify as much as possible the analysis, instead

of an expanding envelope, suppose that we have a sphere, of a

constant radius b, at the surface of which fluid is supplied in such

a manner as to produce a constant velocity V from the centre out-

wards, the supply lasting from the time 0 to the time t, and then

ceasing. This problem is evidently just as good as the former for

the purpose intended, and it has the advantage of leading to a

result which may be more easily worked out. On account of the

length to which the present article has already run, I am unwilling

to go into the detail of the solution
;
I will merely indicate the

process, and state the nature of the result.

Since we have no reason to suspect the existence of a function

of the form F (r+ at) in the value of
<f>

which belongs to the
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present case, we need not burden our equations with this function,

but we may assume as the expression for <j>

(7).

For we can always, if need be, fall back on the complete integral

of (3) ;
and if we find that the particular integral (7) enables us to

satisfy all the conditions of the problem, we are certain that we

should have arrived at the same result had we used the complete

integral all along. These conditions are

$ = 0 when t = 0, from r = b to r= go (8)

;

for <p must be equal to a constant, since there is neither condensa-

tion nor velocity, and that constant we are at liberty to suppose

equal to zero

;

~ = V when r = &, from t = 0 to t — r (9)

;

dr

~ — 0 when r = b, from t = r to t = oo (10).

(8) determines /(a) from z = b to £ = oo
; (9) determinesf(z) from

z = b to z — b — ar; and (10) determines f(z) from z = b —ar to

z = — go
,
and thus the motion is completely determined.

It appears from the resiflt that if we consider any particular

•value of r there is no condensation till at = r — b, when it suddenly

commences. The condensation lasts during the time r, when it is

suddenly exchanged for rarefaction, which decreases indefinitely,

tending to 0 as its limit as t tends to oo . The sudden commence-

ment of the condensation, and its sudden change into rarefaction,

depend of course on the sudden commencement and cessation of

the supply of fluid at the surface of the sphere, and have nothing

to do with the object for which the problem was investigated.

Since there is no isolated wave of condensation travelling outwards,

the complete solution of the problem leads to no contradiction, as

might have been confidently anticipated.
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On the Perfect Blackness of the Central Spot in Newton's

Rings, and on the Verification of Fresnel's Formulae

for the Intensities of Reflected and Refracted Rays.

When Newton’s rings are formed between two glasses of the

same kind, the central spot in the reflected rings is observed to he

perfectly black. This result is completely at variance with the

theory of emissions, according to which the central spot ought to

be half as bright as the brightest part of the bright rings, supposing

the incident light homogeneous. On the theory of undulations,

the intensity of the light reflected at the middle point depends

entirely on the proportions in which light is reflected and refracted

at the two surfaces of the plate of air, or other interposed medium,

whatever it may be. The perfect blackness of the central spot

was first explained by Poisson, in the case of a perpendicular

incidence, who shewed that when the infinite series of reflections

and refractions is taken into account, the expression for the inten-

sity at the centre vanishes, the formula for the intensity of light

reflected at a perpendicular incidence first given by Dr Young

being assumed. Fresnel extended this conclusion to all incidences

by means of a law discovered experimentally by M. Arago, that

light is reflected in the same proportions at the first and second

surfaces of a transparent plate *. I have thought of a very simple

mode of obtaining M. Arago's law from theory, and at the same

* See Dr Lloyd’s Report on Physical Optics .—Deports of the British Association,

Yol. iii. p. 844.
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time establishing theoretically the loss of half an undulation in

internal, or else in external reflection.

This method rests on what may be called the principle of rever-

sion, a principle which may be enunciated as follows.

If any material system, in which the forces acting depend only

on the positions of the particles, be in motion, if at any instant the

velocities of the particles be reversed, the previous motion will be

repeated in a reverse order. In other words, whatever were the

positions of the particles at the time t before the instant of rever-

sion, the same will they be at an equal interval of time t after

reversion; from whence it follows that the velocities of the par-

ticles in the two cases will be equal in magnitude and opposite in

direction.

Let S be the surface of separation of two media which are both

transparent, homogeneous, and uncrystallized. For the present

purpose 8 may be supposed a plane. Let A be a point in the

surface S where a ray is incident along IA in the first medium.

Let AR, AF be the directions of the reflected and refracted rays,

AR! the direction of the reflected ray for a ray incident along FA,

and therefore also the direction of the refracted ray for a ray inci-

dent along RA. Suppose the vibrations in the incident ray to be

either parallel or perpendicular to the plane of incidence. Then

the vibrations in the reflected and refracted rays will be in the

first case parallel and in the second case perpendicular to the plane

of incidence, since everything is symmetrical with respect to that

plane. The direction of vibration being determined, it remains, to

determine the alteration of the coefficient of vibration. Let the

maximum vibration in the incident light be taken for unity, and,

according to the notation employed in Airy’s Tract, let the coeffi-

cient of vibration be multiplied by b for reflection and by c for

refraction at the surface S, and by e for reflection and/ for refrac-

tion at a parallel surface separating the second medium from a

third, of the same nature as the first.

Let x he measured from A negatively backwards along AT,

and positively forwards along AR or AF, and let it denote the

distance from A of the particle considered multiplied by the refrac-

tive index of the medium in which the particle is situated, so that

it expresses an equivalent length of path in vacuum. Let X be the
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length of a wave, and v the velocity of propagation in vacuum

;

and for shortness sake let

i±(vt-x) = X.
Aj

Then sin X, b sin X, c sin X may be taken to represent respec-

tively the incident, reflected, and refracted rays
;
and it follows

from the principle of reversion, if we suppose it applicable to light,

that the reflected and refracted rays reversed will produce the

incident ray reversed. Now if in the reversed rays we measure x

positively along AI or AR', and negatively along AR or AFy
the

reflected ray reversed will give rise to the rays represented by

Z>
2
sin X, reflected along AI;

be sin X, refracted along AR! ;*

and the refracted ray reversed will give rise to

c/sin X, refracted along A

I

;

ce sin X, reflected along AR'.

The two rays along AR' superposed must destroy each other, and

the two along AI must give a ray represented by sin X. We have

therefore

bc-\-ce = 0, b
2
-f cf= 1

;

* It does not at once appear whether on reversing a ray we ought or ought not

to change the sign of the coefficient; but the following considerations will shew

that we must leave the sign unaltered. Let the portion of a wave, in which the

displacement of the ether is in the direction which is considered positive, be called

the positive portion
,
and the remaining part the negative portion; and let the

points of separation be called nodes. There are evidently two sorts of nodes : the

nodes of one sort, which may be called positive nodes
,
being situated in front of the

positive portions of the waves, and the nodes of the other sort, which may be called

negative nodes , being situated behind the positive portions or in front of the

negative, the terms in front and behind referring to the direction of propagation.

Now when the angle X vanishes, the particle considered is in a node
;
and since, at

the same time, the expression for the velocity of the particle is positive, the co-

efficient of sin X being supposed positive, the node in question is a positive node.

When a ray is reversed, we must in the first instance change the sign of -the

coefficient, since the velocity is reversed ; but since the nodes which in the direct

ray were positive are negative in the reversed ray, and viee versd, we must more-

over add ±7r to the phase, which comes to the same thing as changing the sign

back again. Thus we must take If sin A, as in the text, and not -6s sin X, to

represent the ray reflected along A I, and so in other cases.



92 OH THE PERFECT BLACKNESS OF THE

and therefore, since c is not zero,

b=-e (1),

of— 1 —

6

2 = 1 —

e

2
(2).

Equation (1) contains at the same time M. Arago’s law and the

loss of half an undulation; and equations (1) and (2) together

explain the perfect blackness of the centre of Newton’s rings.

(See Airy’s Tract)

If the incident light be common light, or polarized light, of any

kind except plane polarized for which the plane of polarization

either coincides with the plane of incidence or is perpendicular to

it, we can resolve the vibrations in and perpendicular to the plane

of incidence, and consider the two parts separately.

It may be observed that the principle of reversion is just as

applicable to the theory of emissions as to the theory of undula-

tions
;
and thus the emissionists are called on to explain how two

rays incident along BA, FA respectively can fail to produce a ray

along AR'. In truth this is not so much a new difficulty as an old

difficulty in a new shape; for if any mode could be conceived of

explaining interference on the theory of emissions, it would pro-

bably explain the non-existence of the ray along AR'.

Although the principle of reversion applies to the theory of

emissions, it does not lead, on that theory, to the law of intensity

resulting from equations (1) and (2). For the formation of these

equations involves the additional principle of superposition, which

on the theory of undulations is merely a general dynamical

principle applied to the fundamental hypotheses, but which does

not apply to the theory of emissions, or at best must be assumed,

on that theory, as the expression of a property which we are

compelled to attribute to light, although it appears inexplicable.

In forming equations (1) and (2) it has been tacitly assumed

that the reflections and refractions were unaccompanied by any
change of phase, except the loss of half an undulation, which may
be regarded indifferently as a change of phase of 180°, or a change

of sign of the coefficient of vibration. In very highly refracting

substances, however, such as diamond, it appears that when the

incident light is polarized in a plane perpendicular to the plane

of incidence, the reflected light does not wholly vanish at the
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polarizing angle; but as the angle of incidence passes through the

polarizing angle, the intensity of the reflected light passes through

a small minimum value, and the phase changes rapidly through

an angle of nearly 180°. Suppose, for the sake of perfect gener-

ality, that all the reflections and refractions are accompanied by
changes of phase. While the coefficient of vibration is multiplied

by by c, e, orf according to the previous notation, let the phase of

vibration be accelerated by the angle /3, 7, e, or
<fi,

a retardation

being reckoned as a negative acceleration. Then, if we still take

sinX to represent the incident ray, we must take Z>sin (X + /3),

csin(X+7) to represent respectively the reflected and the re-

fracted rays. After reversion we must change the signs of /3 and

7, because, whatever distance a given phase of vibration has

receded from A in consequence of the acceleration accompanying

reflection or refraction, the same additional distance will it have to

get over in returning to A after reversion. We have therefore

b sin(X—/3), csin(X— 7) to represent the rays incident along

BA, FA, which together produce the ray sinX along AI. Now
the ray along RA alone would produce the rays

b2
sin X along.AI, be sin (X — ft + 7) along AR'

;

and the ray along FA alone would produce the rays

cf sin (X— 7 4-
<fi)

along AI, ce sin (X — 7 4- e) along AR\

We have therefore in the same way as before

cf sin (X— 7 -f c/>) = (1 — b
2

)
sin X,

b sin (X— -j- 7) 4- e sin (X— 7+ e) = 0.

Now each of these equations has to hold good for general

values of X, and therefore, as may very easily be proved, the

angles added to X in the two terms must either be equal or must

differ by a multiple of 180°. But the addition of any multiple of

360° to the angle in question leaves everything the same as before,

and the addition of 180° comes to the same thing as changing the

sign of c or /in the first equation, or of b or e in the second. We
are therefore at liberty to take

<f>
= V (3),

£ + €= 27 (4)

;

and the relations between b, c
,
e, and/ will be the same as before.
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Hence M< Arago’s law holds good even when reflection and re-

fraction are accompanied by a change of phase.

Equations (3) and (4) express the following laws with refer-

ence to the changes of phase. The sum of the accelerations of

phase at the two reflections is equal to the sum of the accelerations

at the two refractions ; and the accelerations at the two refractions

are equal to each other. It will be observed that the accelerations

are here supposed to be so measured as to give like signs to c and

f and unlike to b and e .

If we suppose the reflections and refractions accompanied by

changes of phase, it is easy to prove, from equations (3) and (4),

that when Newton’s rings are formed between two transparent

media of the same kind, the intensities of the light in the re-

flected and transmitted systems are given by the same formulae as

when there are no changes of phase, provided only we replace the

retardation 2ttV/\ (according to the notation in Airy’s Tract)

by 27r?y\ — 2e, or replace D> the distance of the media, by

D — Xe/27r cos /3.

Let us now consider some circumstances which might at first

sight be conceived to affect the concltisions arrived at.

When the vibrations of the incident light take place in the

plane of incidence, it appears from investigation that the condi-

tions at the surface of separation cannot all be satisfied by means

of an incident, reflected, and refracted wave, each consisting of

vibrations which take place in the plane of incidence. If the

media could transmit normal vibrations with Velocities com-

parable to those with which they transmit tranversal vibrations,

the incident wave would occasion two reflected and two refracted

waves, one of each consisting of normal, and the other of trans-

versal vibrations, provided the angle of incidence were less than

the smallest of the three critical angles (when such exist), cor-

responding to the refracted transversal vibrations and to the re-

flected and refracted normal vibrations respectively. There appear

however the strongest reasons for regarding the ether as sensibly

incompressible, so that the velocity of propagation of normal vibra-

tions is incomparably greater than that of transversal vibrations.

On this supposition the two critical angles for the normal vibra-

tions vanish, so that there are no normal vibrations transmitted in

the regular way whatever be the angle of incidence. Instead of
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into sufficiently intimate contact to allow of the perfect formation

of the central spot.

Suppose that we deemed the glasses to be in contact when

they were really separated by a certain interval A, and for simpli-

city suppose the reflections and refractions unaccompanied by any

change of phase, except the loss of half an undulation. It evidently

comes to the same thing to suppose the reflections and refractions

to take place at the surfaces at which they do actually take place,

as to suppose them to take place at a surface midway between the

glasses, and to be accompanied by certain changes of phase
;
and

these changes ought to satisfy equations (3) and (4). This may
be easily verified. In fact, putting fi) fi for the refractive

indices of the first and second media, i
,

i' for the angles of in-

cidence and refraction, we easily find, by calculating the retarda-

tions, that

from which we get, by interchanging i and i\ fi and /jf, and chang-

ing the signs, since for the first reflection and refraction the true

surface comes before the supposed, but for the second the supposed

surface comes before the true,

2ttA , ttA u! . /t ,
€ = — ji cos i

,
6 = — . sin (i —i):

X r \ smt v '

and these values satisfy equations (3) and (4), as was foreseen.

Hitherto the common surface of the media has been spoken of

as if the media were separated by a perfectly definite surface, up to

which they possessed the same properties respectively as at a

distance from the surface. It may be observed, however, that the

application of the principle of reversion requires no such restriction.

We are at liberty to suppose the nature of the media to change in

any manner in approaching the common surface
;
we may even sup-

pose them to fade insensibly into each other
;
and these changes

may take place within a distance which need not be small in com-
parison with X.

It may appear to some to be superfluous to deduce particular

results ffonh. hypotheses of great generality, when these results may
be obtained, along with many others which equally agree with
observation, from more refined theories which start with more
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particular hypotheses. And indeed, if the only object of theories

were to group together observed facts, or even to allow us to pre-

dict the results of observation in cases not very different from

those already observed, and grouped together by the theory, such

a view might -be correct. But theories have a higher aim than

this. A well-established theory is not a mere aid to the memory,

but it professes to make us acquainted with the real processes of

nature in producing observed phenomena. The evidence in favour

of a particular theory may become so strong that the fundamental

hypotheses of the theory are hardly less certain than observed

facts. The probability of the truth of the hypotheses, however,

•cannot be greater than the improbability that another set of

equally simple hypotheses should be conceivable, which should

equally well explain all the phenomena. When the hypotheses

are of a general and simple character, the improbability in ques-

tion may become extremely strong
;
but it diminishes in propor-

tion as the hypotheses become more particular. In sifting the

evidence for the truth of any set of hypotheses, it becomes of great

importance to consider whether the phenomena explained, or some

of them, are explicable on more simple and general hypotheses, or

whether they appear absolutely to require the more particular

restrictions adopted. To take an illustration from the case in

hand, we may suppose that some theorist, starting with some par-

ticular views as to the cause of the diminished velocity of light

in refracting media, and supposing that the transition from one

medium to another takes place, if not abruptly, at least in a space

which is very small compared with \ has obtained as the result of

his analysis M. Arago’s law and the loss of half an undulation. We
may conceive our theorist pointing triumphantly to these laws as

an evidence of the correctness of his particular views. Yet, as we

have seen, if these were the only Jaws obtained, the theorist would

have absolutely no solid evidence of the truth of the particular

hypotheses with which he started.

This fictitious example leads to the consideration of the ex-

perimental evidence for Fresnel’s expressions for the intensity of

reflected and refracted polarized light.

There are three particular angles of incidence, namely the

polarizing angle, the angle of 90°, and the angle 0°, for which

special results are deducible from Fresnel’s formulae, which adinit

of being put, and which have been put, to the test of experiment.

78. It
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The accordance of the results with theory is sometimes adduced as

evidence, of the truth of the formulae : hut this point will require

consideration.

In the first place, it follows from Fresnel’s formula for the

intensity of reflected light which is polarized in a -plane perpen-

dicular to the plane of incidence, that at a certain angle of inci-

dence the reflected light vanishes; and this angle is precisely that

determined by experiment. This result is certainly very remark-

able. For Fresnel’s expressions are not mere empirical formula),

chosen so as to satisfy the more remarkable results of experiment.

On the contrary, they were obtained by him from dynamical con-

siderations and analogies, which, though occasionally somewhat*

vague, are sufficient to lead us to regard the formulae as having a

dynamical foundation, as probably true under circumstances which

without dynamical absurdity might be conceived to exist; though

whether those circumstances agree with the actual state of reflect-

ing transparent media is another question. Consequently we

should a priori expect the formulae to be either true or very nearly

true, the difference being attributable to some modifying cause

left out of consideration, or else to be altogether false: and there-

fore the verification of the formulae in a remarkable, though a

particular case, may be looked on as no inconsiderable evidence of

their general truth. It will be observed that the truth of the

formulae is here spoken of, not the truth of the hypotheses con-

cerned in obtaining them from theory.

Nevertheless, even the complete establishment of the formula

for the reflection of light polarized in a plane perpendicular to the

plane of incidence would not establish the formula for light pola-

rized in the plane of incidence, although it would no doubt increase

the probability of its truth, inasmuch as the two formulae were

obtained in the same sort of way. But, besides this, the simplicity

of the law, that the reflected ray vanishes when its direction be-

comes perpendicular to that of the refracted ray, is such as to lead

us to regard it as not improbable that different formulae, corre-

sponding to different hypotheses, should agree in this point. And
in fact the investigation shews that when sound is reflected at the

common surface of two gases, the reflected sound vanishes when
the angle of incidence becomes equal to what may be called, from

the analogy of light, the polarizing angle. It is true that the

formula for the intensity of the reflected sound agrees with the
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formula for the intensity of reflected light when the light is pola-

rized in a plane perpendicular to the plane of incidence, and that

it is the truth of the formulae, not that of the hypotheses, which is

under consideration. Nevertheless the formulas require further

confirmation.

When the angle of incidence becomes 90°, it follows from

Fresnel’s expressions that, whether the incident light is polarized

in or perpendicularly to the plane of incidence, the intensity of the

reflected light becomes equal to that of the incident, and conse-

quently the same is true for common light. This result has been

compared with experiment, and the completeness of the reflection

at an incidence of 90° has been established*. The evidence, how-

evei', for the truth of Fresnel’s formulae which results from this

experiment is but feeble: for the result follows in theory from the

principle of vis viva, provided we suppose none of the labouring

force brought by the incident light to be expended in producing

among the molecules of the reflecting body a disturbance which is

propagated into the interior, as appears to be the case with opaque

bodies. Accordingly a great variety of different particular hypo-

theses, leading to formulae differing from one another, and from

Fresnel’s, would agree in giving a perfect reflection at an incidence

of 90°. Thus for example the formula which Green has givenffor

the intensity of the reflected light, when the incident light is pola-

rized in a plane perpendicular to the plane of incidence, gives the

intensities of the incident and reflected light equal when the angle

of incidence becomes 90°, although the formula in question differs

from Fresnel’s, with which it only agrees to a first approximation

when ya is supposed not to differ much from 1. It appeared in

the experiment last mentioned that the sign of the reflected vibra-

tion was in accordance with Fresnel’s formulae, and that there was

no change of phase. Still it is probable that a variety of formulae

would agree in these respects.

When the angle of incidence vanishes, it follows from Fresnel’s

expressions, combined with the fundamental hypotheses of the

theory of transversal vibrations, that if the incident light he circu-

larly polarized, the reflected light will be also circularly polarized,

but of the opposite kind, the one being right-handed, and the other

* Transactions of the Royal Irish Academy
, vol. xvir. p. 171.

t Transactions of the Cambridge Philosophical Society
,
vol, vn. p. 22.

7—2
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left-handed*. The experiment has been performed, at least per-

formed for a small angle of incidence f, from whence the result

which would have been observed at an angle of incidence 0° may-

be inferred; and theory has proved to be in complete accordance

with experiment. Yet this experiment, although confirming the

theory of transversal vibrations, offers absolutely no confirmation of

Fresnel’s formulae. For when the angle of incidence vanishes,

there ceases to be any distinction between light polarized in, and

light polarized perpendicularly to the plane of incidence: be the

intensity of the reflected light what it may, it must be the same in

the two cases; and this is all that is necessary to assume in de-

ducing the result from theory. The result would necessarily be

the same in the case of metallic reflection, although Fresnel’s for-

mulas do not apply to metals.

By the fundamental hypotheses of the theory of transvei'se

vibrations, are here meant the suppositions, first, that the vibrations,

at least in vacuum and in ordinary media, take place in the front

of the wave; and secondly, that the vibrations in the case of plane

polarized light are, like all the phenomena presented by such light,

symmetrical with respect to the plane of polarization, and conse-

quently are rectilinear, and take place either in, or perpendicularly

to the plane of polarization. From these hypotheses, combined

with the principle of the superposition of vibrations, the nature of

circularly and elliptically polarized light follows. As to the two

suppositions above mentioned respecting the direction of the vibra-

tions in plane polarized light, there appears to be nothing to choose

between them, so far as the geometrical part of the theory is con-

cerned: they represent observed facts equally well. The question

of the direction of the vibrations, it seems, can only be decided, if

decided at all, by a dynamical theory of light. The evidence ac-

cumulated in favour of a particular dynamical theory may be con-

ceived to become so strong as to allow us to regard as decided the

question of the direction of the vibrations of plane polarized light.

It appears, however, that Fresnel’s expressions for the intensities,

and the law which gives the velocities of plane waves in different

directions within a crystal, have been deduced, if not exactly, at

least as approximations to the exact result, from different dyna-

* Philosophical Magazine (New Series), vol. xxn, (1848) p. 92.

t Ibid, p, 202.
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mical theories, in some of which the vibrations are supposed to be

in, and in others perpendicular to the plane of polarization.

It is worthy of remark that, whichever supposition we adopt,

the direction of revolution of an ethereal particle in circularly

polarized light formed in a given way is the same. Similarly, in

elliptically polarized light the direction of revolution is the same

on the two suppositions, but the plane which on one supposition

contains the major axis of the ellipse described, on the other sup-

position contains the minor axis. Thus the'direction of revolution

may be looked on as established, even though it be considered

doubtful whether the vibrations of plane polarized light are in, or

perpendicular to the plane of polarization.

The verification of Fresnel’s formula for the three particular

angles of incidence above mentioned is, as we have seen, not suffi-

cient: the formulae however admit of a very searching comparison

with experiment in an indirect way, which does not require any

photometrical processes. When light, polarized in a plane making

a given angle with the plane of incidence, is incident on the sur-

face of a transparent medium, it follows from Fresnel’s formulae

that both the reflected and the refracted light are plane polarized,

and the azimuths of the planes of polarization are known functions

of the angles of incidence and refraction, and of the azimuth of

the plane of polarization of the incident light, the same formulae

being obtained whether the vibrations of plane polarized light are

supposed to be in, or perpendicular to the plane of polarization.

It is found by experiment that the reflected or refracted light is

plane polarized, at least if substances of a very high refractive

power be excepted, and that the rotation of the plane of polariza-

tion produced by reflection or refraction agrees with the rotation

determined by theory. This proves that the two formulae, that is

to say the formula for light polarized in, and for light polarized

perpendicularly to the plane of incidence, are either both right,

within the limits of error of very precise observations, or both

wrong in the same ratio, where the ratio in question may be any

function of the angles of incidence and refraction. There does not

appear to be any reason for suspecting that the two formulae for

reflection are both wrong in the same ratio. As to the formulae

for refraction, the absolute value of the displacement will depend

on the particular theory of refraction adopted. Perhaps it would

be best, in order to be independent of any particular theory, to
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speak, not of the absolute displacement within a refracting medium,

but of the equivalent displacement in vacuum, of which all that we

are concerned to know is, that it is proportional to the absolute

displacement. By the equivalent displacement in vacuum
,

is here

meant the displacement which would exist if the light were to pass

perpendicularly, and therefore without refraction, out of the medium
into vacuum, without losing vis viva by reflection at the surface.

It is easy to prove that Fresnel's formulae for refraction would be

adapted to this mode of estimating the vibrations by multiplying

by \/ja; indeed, the formulae for refraction might be thus proved,

except as to sign, by means of the principle of vis viva
,
the

formulae for reflection being assumed. It will be sufficient to shew

this in the case of light polarized in the plane of incidence.

Let i, if be the angles of incidence and refraction, A any area

taken in the front of an incident wave, l the height of a prism

having A for its base and situated in the first medium. Let r be

the coefficient of vibration in the reflected wave, that in the inci-

dent wave being unity, q the coefficient of the vibration in vacuum
equivalent to the refracted vibration. Then the incident light

which fills the volume Al will give rise to a quantity of reflected

light filling an equal volume Al, and to a quantity of refracted

light which, after passing into vacuum in the way supposed, would

fill a volume Al cos i'/cos i. We have therefore, by the principle

of vis viva
,

2
CQS h i

2 -|
sin

2
($ — i

) _ 4 sin i' cos i
r

sin i cos i

® cos i
T

sin
2

(if + i)
~~ sin

2
(if + i)

This equation does not determine the sign of q : but it seems

impossible that the vibrations due to the incident light in the

ether immediately outside the refracting surface should give rise

to vibrations in the opposite direction in the ether immediately

inside the surface, so that we may assume q to be positive. We
have then

— ? cos £fL
s^n 0 __ /

2 sin i cos i . .

® sin (i' -M) “
sin (i‘ -f if)'

* *
* ^

as was to he proved. The formula for light polarized perpendicu-

larly to the plane of incidence may be obtained in the same way.

The formula (5), as might have been foreseen, applies equally well

to the hypothesis that the diminished velocity of propagation

within refracting media is due to an increase of density of the
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ether, which requires us to suppose that the vibrations of plane

polarized light are perpendicular to the plane of polarization, and

to the hypothesis that the diminution of the velocity of propaga-

tion is due to a diminution of elasticity, which requires us to sup-

pose the vibrations to he in the plane of polarization.

If the refraction, instead of taking place out of vacuum into a

medium, takes place out of one medium into another, it is easy

to shew that we have only got to multiply by J/jl instead of

Vm; ya, ^ being the refractive indices of the first and second media

respectively.



[From the Cambridge and Dublin Mathematical Journal, Vol. iv. p. 194

{May and November
,
1849).]

On Attractions, and on Clairatjt’s Theorem.

Clairaut’s Theorem is usually deduced as a consequence

of the hypothesis of the original fluidity of the earth, and the

near agreement between the numerical values of the earth's ellip-

ticity, deduced independently from measures of arcs of the meridian

and from pendulum experiments, is generally considered as a

strong confirmation of the hypothesis. Although this theorem is

usually studied in connection with the hypothesis just mentioned,

it ought to be observed that Laplace, without making any assump-

tion respecting the constitution of the earth, except that it consists

of nearly spherical strata of equal density, and that its surface

may be regarded as covered by a fluid, has established a connexion

between the form of the surface and the variation of gravity, which

in the particular case of an oblate spheroid gives directly Clairaut’s

Theorem* If, however, we merely assume, as a matter of obser-

vation, that the earth's surface is a surface of equilibrium, (the

trifling irregularities of the surface being neglected), that is to say

that it is perpendicular to the direction of gravity, then, indepen-

dently of any particular hypothesis respecting the state of the

interior, or any theory but that of universal gravitation, there

exists a necessary connexion between the form of the surface and

the variation of gravity along it, so that the one being given the

other follows. In the particular case in which the surface is an

* See the Mtcanique Celeste, Liv. in., or the reference to it in Pratt’s Mechanics ,

Chap. Figure of the Earth

.



ON ATTRACTIONS, AND ON CLAIRAUT’S THEOREM. 105

oblate spheroid of small eccentricity, which the measures of arcs

shew to be at least very approximately the form of the earth’s

surface, the variation of gravity is expressed by the equation which

is arrived at on the hypothesis of original fluidity. I am at present

engaged in preparing a paper on this subject for the Cambridge

Philosophical Society: the object of the following pages is to give

a demonstration of Clairaut’s Theorem, different from the one

there employed, which will not require a knowledge of the pro-

perties of the functions usually known by the name of Laplace’s

Functions* It will be convenient to commence with the demon-
stration of a few known theorems relating to attractions, the law

of attraction being that of the inverse square of the distance*.

Preliminary Propositions respecting Attractions.

Prop. i. To express the components of the attraction of any

mass in three rectangular directions by means of a single function.

Let m be the mass of an attracting particle situated at the

point P\ the unit of mass being taken as is usual iti central

forces, m the mass of the attracted particle situated at the point

P, x
y

'i/y z the rectangular co-ordinates of P' referred to any origin,

Xy y, z those of P
;
X

}
Y9 Z the components of the attraction of

m' on m, measured as accelerating forces, and considered positive

when they tend to increase x, y, z\ then, if PP r = r',

x= -
m.
(* - *)> Y= 75 (y - y)> -,3 (z -z).

* My object in giving these demonstrations is simply to enable a reader who
may not have attended particularly to the theory of attractions to follow with

facility the demonstration here gi^en of Clairaut’s Theorem. In speaking of the

theorems as “known” I have, I hope, sufficiently disclaimed any pretence at

originality. In fact, not one of the “propositions respecting attractions” is new,

although now and then the demonstrations may differ from what have hitherto

been given. With one or two exceptions, these propositions will all be found in

a paper by Gauss, of which a translation is published in the third volume of

Taylor’s Scientific Memoirs, p. 153. The demonstration here given of Prop. iv. is

the same as Gauss’s; that of Prop, v., though less elegant than Gauss’s, appears to

me more natural. The ideas on which it depends render it closely allied to a paper

by Professor Thomson, in the third volume of this Journal (Old Series), p. 71.

Prop. ix. is given merely for the sake of exemplifying the application of the same

mode of proof to a theorem of Gauss’s.
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Since r'
s = (x - xf + (y'-yf + (*' - zf>

m dr'

we have r
7

nr~ = — — #) >
whence JC — ^2

ax
, dfr

r ‘ c?#

d m'
m

dx r
3

with similar equations for Y and Z.

If instead of a single particle m' we have any number of

attracting particles *»', m"... situated at the points (x, y, z’),

(x", y", z ')..., and if we put

(1 ),
m.m v w — V_ +„ + . = S7 - V.

we get

If instead of a set of distinct particles we have a continuous

attracting mass M\ and if we denote hy dm’ a differential element

of M’, and replace (1) hy

(3),

equations (2) will still remain true, provided at least P be external

to M' ;
for it is only in that case that we are at liberty to consider

the continuous mass as the limit of a set of particles which are all

situated at finite distances from P. It must he observed that

should M' occupy a closed shell, within the inner surface of which

P is situated, P must he considered as external to the mass M'

.

Nevertheless, even when P lies within U\ or at its surface, the

expressions for V and dV/dx, namely
JJJ

and
JJJ

(x — x) ,

admit of real integration, defined as a limiting summation, as may

be seen at once on referring M' to polar co-ordinates originating

at P; so that the equations (2) still remain true.

Prop. ii. To express the attraction resolved along any line

by means of the function V.

Let 8 be the length of the given line measured from a fixed

point up to the point P
; \ ft, v, the direction-cosines of the

tangent to this line at P, F the attraction resolved along this

tangent: then

dV dV dV
' dxF=XX + /jlY 4- vZ^X^Y+p^ + v 1

’ dy dz
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Now if we restrict ourselves to points lying in the line s, V will

he a function of s alone
;
or we may regard it as a function of x, y,

and each of which is a function of s

;

and we shall have, by

Differential Calculus,

dV^dVdx dV dy dV dj
m

ds dx ds dy ds dz ds
’

and since dxjds = A, dy/ds = fju, dz/ds= v, we get

dVF=
ds

(4).

Prop. hi. To examine the meaning of the function V.

This function is of so much importance that it will be well to

dwell a little on its meaning.

In the first place it may be observed that the equation (1)

or (3) contains a physical definition of V,
which has nothing to do

with the system of co ordinates, rectangular, polar, or any other,

which may be used to define algebraically the positions of P and

of the attracting particles. Thus V is to be contemplated as a

function of the position of P in space, if such an expression may
be allowed, rather than as a function of the co-ordinates of P;
although, in consequence of its depending upon the position of P,

V will be a function of the co-ordinates of P,
of whatever kind

they may be.

Secondly, it is to be remarked that although an attracted

particle has hitherto been conceived as situated at P, yet V has

a definite meaning, depending upon the position of the point P,

whether any attracted matter exist there or not. Thus V is to be

contemplated as having a definite value at each point of space,

irrespective of the attracted matter which may exist in some

places.

The function V admits of another physical definition which

ought to be noticed. Conceive a particle whose mass is m to move
along any curve from the point P

0
to P. If F be the attraction

of M' resolved along a tangent to m s path, reckoned as an accele-

rating force, the moving force of the attraction resolved in the

same direction will be mF
}
and therefore the work done by the

attraction while m describes the elementary arc ds will be ulti-

mately mFdSj or by (4) m . dV/ds . ds . Hence the whole work done

as m moves from P
0
to P is equal to m (V— F

0),
V

0
being the
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value of V at P
0
. If P0

be situated at an infinite distance, V0

vanishes, and the expression for the work done becomes simply

mV. Hence V might be called the work of the attraction
,
referred,

to a unit of mass of the attracted particle

;

but besides that such

a name would be inconveniently long, a recognized name already

exists. The function V is called the potential of the attracting

mass*.

The first physical definition of V is peculiar to attraction ac-

cording to the inverse square of the distance. According to the

second, V is regarded as a particular case of the more general

function whose partial differential coefficients with respect toes, y, z

are equal to the components of the accelerating force
;
a function

which exists whenever Xdx + Ydy + Zdz is an exact differential.

Prop. iv. If 8 be any closed surface to which all the attract-

ing mass is external, dS an element of S, dn an element of the

normal drawn outwards at dS, then

/Ja>- 0 <5>-

the integral being taken throughout the whole surface S.

Let m' be- the mass of any attracting particle which is situated

at the point P\ P' being by hypothesis external to S. Through

P' draw' any right line L cutting S, and produce it indefinitely in

one direction from F. The line L will in general cut S in two

points; but if the surface S be re-entrant, it may be cut in four,

six, or any even number of points. Denote the points of section,

taken in order, by Pv P2 , P8 ,
&c., P

1
being that which lies nearest

to F. With F for vertex, describe about the line L a conical

surface containing an infinitely small solid angle a, and denote by

Av Ar .. the areas which it cuts out from S about the points

Pv Pr ... Let 0
l ,

0r .. be the angles which the normals drawn
outwards at P

l9
P

2
... make with the line L

,
taken in the direction

from P
x
to F

;
N

x ,
Nr .. the attractions of m' at Fv Pr .. resolved

along the normals; rv rr .. the distances of Pv P2
... from P'. It

* [The term “potential,” as used in the theory of Electricity, may he defined in

the following manner ; “ The potential at any point P, in the neighbourhood of

electrified matter, is the amount of work that would he necessary to remove a
body charged with a unit of negative electricity from that position to an infinite

distance.”—w. t.]
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is evident that the angles 6
X , 02

... will be alternately acute and

obtuse. Then we have

= ~ cos ev ™ cos (tt - 6
t)
&c.

1
1

r
2

We have also in the limit

A
x
= ar

x
sec 0

X>
A

2 = a
r*

sec (tt — 0
2) ,

&c.

;

and therefore iV
r

1
il

1
= am', W

2
-4

2
= — am', N

8
^4

3
= am', &c.;

and therefore, since the number of points P
x ,
P

2
... is even,

N
X
A

X +N2
A

2 +NZ
A^ 4* .

.

= am — am -f- am — am' ... = 0.

Now the whole solid angle contained within a conical surface

described with P' for vertex so as to circumscribe 8 may be divided

into an infinite number of elementary solid angles, to each of which

the preceding reasoning will apply; and it is evident that the

whole surface 8 will thus be exhausted. We have therefore

limit of 2NA = 0;

or, by the definition of an integral,

JJffidS- 0.

The same will be true of each attracting particle m
;
and there-

fore if N refer to the attraction of the whole attracting mass, we
shall still have JJJSfdS = 0. But by (4) JV= dVjdn, which proves

the proposition.

Prop. v. If V be equal to zero at all points of a closed surface

S which does not contain any portion of the attracting mass, it

must be equal to zero at all points of the space T contained with-

in S.

For if not, V must be either positive or negative in at least a

certain portion of the space T, and therefore must admit of at least

one positive or negative maximum value Vv Call the point, or

the assemblage of connected points, at which V has its maximum
value V

x ,
T

x
. It is to be observed, first, that T

x
may denote either

a space, a surface, a line, or a single point; secondly, that should

Y happen to have the same value V
x
at other points within T,

such points must not be included in T
x
. Then, all round Tv V is

decreasing, positively or negatively according as V
x

is positive or

negative. Circumscribe a closed surface S
x
around T

x , lying
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wholly within S, which is evidently possible. Then if he drawn

sufficiently close round Tv V will be increasing in passing out-

wards across $,*; and therefore, if denote a normal drawn out-

wards at the element dS. of S,, dVjdnl
will be negative or positive

r fdf
according as V

1
is positive or negative, and therefore ll^-dS

x ,

taken throughout the whole surface will he negative or positive,

which is contrary to Prop. IV. Hence V must he equal to zero

throughout the space T.

Coe. 1. If F he equal to a constant A at all points of the

surface 8,
it must be equal to A at all points within 8. For it

may be proved just as before that F cannot he either greater or

less than A within 8.

Coe. 2. If Fbe not constant throughout the surface 8, and if

A he its greatest, and B its least value in that surface, F cannot

anywhere within 8 be greater than A nor less than B.

Coe. 3. All these theorems will he equally true if the space T
extend to infinity, provided that instead of the value of F at the

hounding surface of T we speak of the value of F at the surface by

which T is partially hounded, and its limiting value at an infinite

distance in T. This limiting value might be conceived to vary

from one direction to another. Thus T might be the infinite space

lying within one sheet of a cone, or hyperboloid of one sheet, or

the infinite space which lies outside a given closed surface 8} which

contains within it all the attracting mass. On the latter suppo-

sition, if Fbe equal to zero throughout S, and vanish at an infinite

distance, F must be equal to zero everywhere outside 8. If F
vanish at an infinite distance, and range between the limits A and

B at the surface S
y
V cannot anywhere outside S lie beyond the

limits determined by the two extremes of the three quantities A,

B
}
and 0.

* It might, of course, be possible to prevent this by drawing sufficiently

puckered, but Sx is supposed not to be so drawn. Since V is decreasing from T
x

outwards, if we consider the loci of the points where V has the values F
2,
V
s,
V

4 ...

decreasing by infinitely small steps from Vlf it is evident that in the immediate
neighbourhood of Tx these loci win be closed surfaces, each lying outside the

preceding, the first of which ultimately coincides with Tx if T
x
be a point, a line, or

a surface, or with the surface of Tx if T
x
be a space. If now we take for S1

one of

these “ surfaces of equilibrium,” or any surface cutting them at acute angles, what
was asserted in the text respecting S1

will be true. *
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Prop. VI. At any point (%, y,
z) external to the attracting

mass, the potential V satisfies the partial differential equation

d2V d2V <PV^
daf dy2

dz
2 (6).

For if V' denote the potential of a single particle m, we have,

employing the notation of Prop. I.,

_ m' dV'
__ m! dr' _ m' , .

~ r” ~Ix ~~Vl dx~Tz ^
X ~ X’’

cVV = 3m'

~dx* r'°
(x - xf

m

with similar expressions for d?V’jdif and d2 V'/dz
2

\
and therefore

V' satisfies (6). This equation will he also satisfied by the poten-

tials V'\ V of particles m", m"' ... situated at finite distances

from the point
(
x

, y, z), and therefore by the potential V of all the

particles, since V == V'-hV" + V'" + ... Now, by supposing the

number of particles indefinitely increased, and their masses, as

well as the distances between adjacent particles, indefinitely

diminished, we pass in the limit to a continuous mass, of which all

the points are situated at finite distances from the point (x, y}
z).

Hence the potential V of a continuous mass satisfies equation (C)

at all points of space to which the mass does not reach.

Scholium: to Prop. v. Although the equations (5) and (C)

have been proved independently of each other from the definition

of a potential, either of these equations is a simple analytical con-

sequence of the other^. Now the only property of a potential

* The equation (6) will be proved by means of (5) further on (Prop, vm.), or

rather an equation of which (6) is a particular case, by means of an equation of

which (5) is a particular case. Equation (5) may bo proved from (6) by a known

transformation of the equation JfJ^V dx dy dz—0, where denotes the first

member of (6), and the integration is supposed to extend over tho space T. Eor,

taking the first term in yP> we get

IJ{S dxdydz=
lJ(^),y

dz
-ff(S)y

dz
’

where
> {jj^)

denote the values of at the points where 8 is cut by

a line drawn parallel to the axis of x through the point whose co-ordinates are

0, y, z. Now if \ be the angle between the normal drawn outwards at the element

of surface dS and the axis of x,

JJ(S) //

dydz=
ff^

coaXdS
’ I\^£)

dydx=
\.J^ cos(r - x)dS’

where the first integration is to be extended over the portion of S which lies to the
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assumed in Prop. V, is, that it is a quantity which varies continu-

ously within the space T
}
and satisfies the equation (5) for any

closed surface drawn within T. Hence Prop, v, which was enun-

ciated with respect to the potential of a mass .lying outside P, is

equally true with respect to any continuously varying quantity

which within the space P satisfies the equation (6). It should he

observed that a quantity like r"
1
is not to be regarded as such, if r

denote the distance of the point (x, y, z) from a point P, which lies

within P, because r”
1 becomes infinite at P,.

Clairaufs Theorem.

1. Although the earth is really revolving about its axis, so

that all problems relating to the relative equilibrium of the earth

itself and the bodies on its surface are really dynamical problems,

we know that they may be treated statically by introducing, in

addition to the attraction, that fictitious force which we call the

centrifugal force. The force of gravity is the resultant of the

attraction and the centrifugal force
;
and we know that this force

is perpendicular to the general surface of the earth. In fact, by

far the larger portion of the earth's surface is covered by water,

the equilibrium of which requires, according to the principles of

hydrostatics, that its surface be perpendicular to the direction of

gravity
;
and the elevation of the land above the level of the sea,

or at least the elevation of large tracts of land, is but trifling com-

pared with the dimensions of the earth. We may therefore regard

the earth's surface as a surface of equilibrium.

positive side of the curve of contact of S and an enveloping cylinder with its gene-

rating lines parallel to the axis of x, and the second integration over the remainder

of S. If then we extend the integration over the whole of the surface S, we get

dx dy dz=
jj

cos X . dS.

Making a similar transformation with respect to the two remaining terms of vF,
and observing that if /x, v be for y, z what X is for x,

. dV dV
COS X ^ J- COS H “—

b

dx dy

dV
COS V —

=

dz

dV
dn 9

we obtain equation (5).

If V be any continuously varying quantity which within the space T satisfies

the equation vF=0, it may be proved that it is always possible to distribute

attracting matter outside Tin such a manner as to produce within T a potential

equal to F.
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2. Let the earth be referred to rectangular axes, the axis of z

coinciding with the axis of rotation. Let V he the potential of

the mass, co the angular velocity, X, Y}
Z the components of the

whole force at the point (x, y)
z) ;

then

Y dV 2X=-^ + a>x,
„ dV, , , dVr-* + “ 3'- zs-

Now the general equation to surfaces of equilibrium is

f(Xdx -J- Ydy+ Zdz) — const.,-

and therefore we must have at the earth’s surface

V+%a>*(x* + y*)=c (7),-

where c is an unknown constant. Moreover V satisfies the equa-

tion (6) at all points external to the earth, and vanishes at an
infinite distance. But these conditions are sufficient to determine

V at all points of space external to the earth. For if possible

let V admit of two different values V
t , F2

outside the earth, and
let' V

x
— V2

— V'. Since V
x
and F

2
have the same value

(^+y2

)

at the surface, V* vanishes at the surface
;
and it vanishes likewise

at an infinite distance, and therefore by Prop. V. F'=0 at all points

outside the earth. Hence if the form of the surface be given*, V
is determinate at all points of external space, except so far as

relates to the single arbitrary constant c which is involved in its

complete expression.

3. Now it appears from measures of arcs of the meridian,

that the earth’s surface is represented, at least very approximately,

by an oblate spheroid of small ellipticity, having its axis of figure

coinciding with the axis of rotation. It will accordingly be more

convenient to refer the earth to polar,- than to rectangular co-

ordinates. Let the centre of the surface be taken for origin
;
let r

he the radius vector, 6 the angle between this radius and the axis

of z
, <p the angle between the plane passing through these linos

and the plane xz. Then if the square of the ellipticity be neg-

lected, the equation to the surface may be put under the form

r = a (1 — ecos2
0).. . (8) ;

and from (7) we must have at the surface

F-f |o)V sin
2
0 — c.. (9).
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If we denote for shortness the equation (6) by yV— 0, we have

by transformation to polar co-ordinates*

T_ d*V 2 dV 1 d
( .

1 rfF
+

r dr
+

r2
sin # dd dd ) r

2
sin

2
#

= 0 (10).

J / . .cZF'
-T Sm^-Tn

4. The form of the equations (8) and (9) suggests the occur-

rence of terms of the form ^ (r) -J- % (r) cos
2
# in the value of F.

Assume then

F= ^ (r) + % (r) cos
2
(9 + w (11)*

"We are evidently at liberty to make this assumption, on account

of the indeterminate function w. Now if we observe that

1 d

sin 6 d0

d . cos
2 # = 2 — 6 cos

2
#,

we get from (10) and (11)

V (r) + (r) + ~ X (f) + {x
"
(r) + %x(r)~pX Ml cos^

+ yw = 0 (12).

If now we determine the functions yfr, x from the equations

r(r) + l+'(r) + ^ X (r) = 0 (13),

%"W +
2

%'(0- J%(0 = 0 (14),

we shall have yw - 0.

By means of (14), equation (13) may be put under the form

r(r)+-
r V (r)=-i{x(r)+~x(.r)};

and therefore yjr (r) = — (r) is a particular integral of (13). Th©
equations (14), and (13) when deprived of its last term, are easily

integrated, and we get

+ (
r
) = 7 + B ~ \X (

r)> x(r)=p (15).

Now V vanishes at an infinite distance
;
and th© same will be the

* Cambridge Mathematical Journal, Vol. i. (Old Scried. r>. 122. or 0*Rri©a*u
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case with w provided we take B — 0, D = 0, when we get from

(11) and (15) .

r“7 + p(cOB**-*)+W (10).

5. It remains to satisfy (9). Now this equation may he satis-

fied, so far as the large terms are concerned, by means of the

constant A, since # appears only in the small terms. We have

a right then to assume C to be a small quantity of the first order.

Substituting in (1G) the value of r given by (S), putting the re-

sulting value of V in (9), and retaining the first order only of small

quantities, we get

“ (1 + ecos
2

#) + ~ (cos
2# — |) + wt

4- ~ a2
(l — cos

2
6) = c...(l7),

w
/
being the value of w at the surface of the earth. Now the

constants A and G allow us to satisfy this equation without the

aid of wr We get by equating to zero the sum of the constant

terms, and the coefficient of cos
2

#,

A C o)V
a 3a8 + 2

Ae G
__

a a8 2

These equations combined with (17) give w
x
= 0. Now we

have seen that w satisfies the equation = 0 -at all points ex-

terior to the earth, and that it vanishes at an infinite distance

;

and since it also vanishes at the surface, it follows from Prop. V.

that it is equal to zero every where without the earth.

It is true that w
/

is not strictly equal to zero, but only to a

small quantity of the second order, since quantities of that order

are omitted in (17). But it follows from Prop. v. Cor. 3, that if

vf, w" be respectively the greatest and least values of w/y w cannot

anywhere outside the earth lie beyond the limits determined by

the two extremes of the three quantities w , w"> and 0, and there-

fore must be a small quantity of the second order
;
and since we

are only considering the potential at external points, we may omit

w altogether.

If E be the mass of the earth, the potential at a very great

8—2
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distance r is ultimately equal to E/r. Comparing this with the

equation obtained from (16) by leaving out w, we get

A =E.

The first of equations (18) serves only to determine c in terms

of E, and c is not wanted. The second gives

C = — Ea'e + K«S
>

whence, we get from (16)

F=V
-
(?

" h#v
) 7

(cos
’
6 - h) (19) -

6. If g be the force of gravity at any point of the surface, v

the angle between the vertical and the radius vector drawn from

the centre, g cos v will be the resolved part of gravity along the

radius vector ;
and we shall have

9 cosv =—
J;(F+^Vsin2

0) (20),

where after differentiation r is to be put equal to the radius sector

of the surface. hTow v is a small quantity of the first order, and

therefore cos v may be replaced by 1, whence we get from (8), (19)>

and (20),

g= (1 4 2e cos
2

9) - S — %od
2
a'\ (cos

2
9 —

fe)
— o>

2
a. (1 — cos

2
0),

or </ = (l+.e) !-$»*«+
(§ J) cos^ <21).

At the equator 6 = \tt
;
and if we put Q- for gravity at the equator,

m for the ratio of the centrifugal force to gravity at the equator,

we get a>V=m G-, and

(1 + §m) 0= (1 q- e) ,

whence .#= (1 4-§^-~ e) (22);

and (21) becomes g = 0- {1 -f (fm - e) cos
2
#} . ,. (23).

7. Equation (22) gives the mass of the earth by means of the
value of 0 determined by the pendulum. In the preceding investi-
gation, 9 is the complement of the corrected latitude

;
but since B

occurs only in the small terms, and the squares of small quantities
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have been omitted throughout, we may regard 6 as the comple-

ment of the true latitude, and therefore replace cos 6 by the sine

of the latitude. In the case of the earth, nz is about and e

about and therefore \m — e is positive. Hence it appears

from (23) that the increase of gravity from the equator to the pole

varies as the square of the sine of the latitude, and the ratio which

the excess of polar over equatorial gravity bears to the latter, added

to the ellipticity, is equal to | x the ratio of the centrifugal force

to gravity at the equator.

8. If instead of the equatorial radius a, and equatorial gravity

&, we choose to employ the mean radius a
t , and mean gravity Ov

we have only to remark that the mean value of cos
2
9

,
or

J j
C°s2 ^ S*n ^^

is £, which gives

= a (1 - y), = a (1+ pi - |e),

which reduces equations (8), (22), and (23) to

r = a
t
{l-e(cos!!

0-|)},

E= (1 + |m) G
x
a?,

9=G
i {1 + “ «) (

cosS 0 ~ £)}-

9. We get from (19), for the potential at an external point,

TP JPn2

cote-i) (24).

Now the attraction of the moon on any particle of the earth,

and consequently the attraction of the whole earth on the moon,

will be very nearly the same as if the moon's mass were collected

at her centre of gravity. Let r be the distance between the

centres of the earth and moon, 6 the moon's north polar distance,

P the attraction of the earth on the moon, resolved along the

radius vector drawn from the earth's centre, Q the attraction per-

pendicular to the radius vector, a force which will evidently lie in

a plane passing through the earth's axis and the centre of the

moon. Then, supposing Q measured positive towards the equator,

we have from (4),

o- ldV
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whence, from (24),

P= 3 (e -|m)§ (
cos2 * - 4)

r
2

V (25).

Q = 2 (e — £m)^ sin 6 cos 0

The moving force arising from the attraction of the earth on

the moon is a force passing through the centre of the moon, and

having for components MP along the radius vector, and MQ per-

pendicular to the radius vector, M being the mass of the moon

;

and on account of the equality of action and reaction, the moving

force arising from the attraction of the moon on the earth is equal

and opposite to the former. Hence the latter force is equivalent

to a moving force MP passing through the earth s centre in the

direction of the radius vector of the moon, a force MQ passing

through the earth’s centre in a direction perpendicular to the

radius vector, and a couple whose moment is MQr tending to turn

the earth about an equatorial axis. Since we only want to deter-

mine the motion of the moon relatively to the earth, the effect of

the moving forces MP, MQ acting on the earth will be fully taken

into account by replacing E in equations (25) by E-\- M. If p be

the moment of the couple, we have

fju = 2 (e - \m) ^~r~ sin 6 cos d (26).

This formula will of course apply, mutatis mutandis, to the moment
of the moving force arising from the attraction of the sun.

10. The force expressed by the second term in the value of P
,

in equations (25), and the force Q ,
or rather the forces thence

obtained by replacing E by E -f M,
are those which produce the

only two sensible inequalities in the moon’s motion which depend

on the oblateness of the earth. We see that they enable us to

determine the ellipticity of the earth independently of any hypo-

thesis respecting the distribution of matter in its interior.

The moment fi, and the corresponding moment for the sun, are

the forces which produce the phenomena of precession and nuta-

tion. In the observed results, the moments of the forces are

divided by the moment of inertia of the earth about an equatorial

axis. Call this Ea2
fc

;

let M = Ejn
;
let l be the annual precession,
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and/the coefficient in the lunar nutation in obliquity; then we
shall have

/—f-i
where A/ B, 0 denote certain known quantities. Hence the

observed values of b and / will serve to determine the two unknown

quantities n
,
and the ratio of e — \m to tc. If therefore we suppose

e to be known otherwise, we shall get the numerical value of ic.

11. In determining the mutual attraction of the moon and

earth, the attraction of the moon has been supposed the same as if

her mass were collected at her centre, which we know would be

strictly true if the moon were composed of concentric spherical

strata of equal density, and is very nearly true of any mass, how-

ever irregular, provided the distance of the attracted body be very

great compared with the dimensions of the attracting mass, and

the centre be understood to mean the centre of gravity. It will

be desirable to estimate the magnitude of the error which is likely

to result from this supposition. For this purpose suppose the

moon’s surface, or at least a surface of equilibrium drawn imme-

diately outside the moon, to be an oblate spheroid of small ellip-

ticity, having its axis of figure coincident with the axis of rotation.

Then the equation (24) will apply to the attraction of the moon on

the earth, provided we replace
m

E, a, by M} a!, where a' is the

moon’s radius, take 6 to denote the angular distance of the radius

vector of the earth from the moon’s axis, and suppose e and m to

have the values which belong to the moon. Now E is about 80

times as great as M

\

and a about 4 times as great as a', and there-

fore jEa? is about 1200 times as great as Ma But m is extremely

small in the case of the moon
;
and there is no reason to think

that the value of e for the moon is large in comparison with its

value for the earth, but rather the contrary
;
and therefore the

effect of the moon’s oblateness on the relative motions of the

centres of the earth and moon must be altogether insignificant,

especially when we remember that the coefficients of the two

sensible inequalities in the moon’s motion depending on the earth’s

* will appear in these equations rather than Ijn, because, if S be the

mass, and r, the distance of the sun, the ratio of If/r3 to S/rf is equal to l/(n+l)

multiplied by that of (E + M)/r* to S/rf, and the latter ratio is known by the mean

motions of the sun and moon.
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oblateaess are only about 8". It is to be observed that the suppo-

sition of a spheroidal figure has only been made for the sake of

rendering applicable the equation (24), which had been already

obtained, and has nothing to do with the order of magnitude of the

terms we are considering*.

Although however the effect of the moon’s oblateness, or rather

of the possible deviation of her mass from a mass composed of con-

centric spherical strata, may he neglected in considering the motion

of the moon’s centre, it does not therefore follow that it ought to

be neglected in considering the moon’s motion about her own axis.

For in the first place, in comparing the effects produced on the

moon and on the earth, the moment of the mutual moving force of

attraction of the moon and earth is divided by the moment of

inertia of the moon, instead of the moment of inertia of the earth,

which is much larger; and in the second place, the effect now con-

sidered is not mixed up with any other. In fact, it is well known
that the circumstance that the moon always presents the same face

to us has been accounted for in this manner.

12. In concluding this subject, it may be well to consider the

degree of evidence afforded by the figure of the earth in favour

of the hypothesis of the earth’s original fluidity.

In the first place, it is remarkable that the surface of the earth

is so nearly a surface of equilibrium. The elevation of the land
above the level of the sea is extremely trifling compared with the
breadth of the continents. The surface of the sea must of course
necessarily be a surface of equilibrium, hut still it is remarkable
that the sea is spread so uniformly over the surface of the 6arth.

There is reason to think that the depth of the sea docs not exceed
a very few miles on the average. Were a roundish solid taken at
random, and a quantity of water poured on it, and allowed to
settle under the action of the gravitation of the solid, the proba-
bility is that the depth of the water would present no sort of

# If the expression for V be formed directly*, and be expanded, according to
inverse powers of ?*, the first term will be Af/r. The terms involving will
disappear if the centre of gravity of the moon be taken for origin, those involving
r
“3 are the terms we are here considering. If the moon’s centre of gravity, or
rather its projection on the apparent disk, did not coincide with the centre of the
disk, it is easy to see the nature of the apparent inequality in the moon’s motionwMch would thence result.
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aity, and would be in some places very great. Nevertheless

surcustance that the surface of the earth is so nearly a surface

ilibrium might he attributed to the constant degradation

original elevations during the lapse of ages.

tlie second place, it is found that the surface is very nearly

ate spheroid, having for its axis the axis of rotation. That

rface should on the whole be protuberant about the equator

Ling remarkable, because even were the matter of which the

is composed arranged symmetrically about the centre, a

5 of equilibrium would still be protuberant in consequence

centrifugal force; and were matter to accumulate at the

r by degradation, the ellipticity of the surface of equi-

cx would be increased by the attraction of this matter,

theless the ellipticity of the earth is much greater than

Lipticity (|m) due to the centrifugal force alone, and even

r than the ellipticity which would exist were the earth

sed of a sphere touching the surface at the poles, and con-

of concentric spherical strata of equal density and of a

co-spheroidal shell having the density of the rocks and clay

surface*. This being the case, the regularity of the surface

doubt remarkable
;
and this regularity is accounted for on

pothesis of original fluidity.

e near coincidence between the numerical values of the

city of the terrestrial spheroid obtained independently from

lotion of the moon, from the pendulum, by the aid of

ut’s theorem, and from direct measures of arcs, affords no

cmal evidence whatsoever in favour of the hypothesis of

al fluidity, being a direct consequence of the law of universal

atiorrf*.

may "be proved without difficulty that the value of e corresponding to this

tion is nearly, if we suppose the density of the shell to be to the mean
as 5 to 11.

rith. respect to the argument derived from the motion of the moon, this

lias already been made by Professor O’Brien, who has shewn that if the
' the surface and the law of the variation of gravity he given independently,

vve suppose the earth to consist approximately of spherical strata of equal

,
without which it seems impossible to account for the observed regularity of

at the surface, then the attraction on the moon follows as a necessary con-

>e, independently of any theory but that of universal gravitation. (Tract on

ure of the Earth.) If the surface be not assumed to be ono of equilibrium,

n nearly spherical, and if the component of gravity in a direction perpen-
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If the expression for V given by (24) be compared with the

expression which would be obtained by direct integration, it may
easily be shewn that the axis of rotation is a principal axis, and

that the moments of inertia about the other two principal axes are

equal to each other, so that every equatorial axis is a principal

axis. These results would follow as a consequence of the hypo-

thesis of original fluidity. Still it should be remembered that

we can only affirm them to be accurate to the degree of accuracy

to which we are authorized by measures of arcs and by pendulum

experiments to affirm the surface to be an oblate spheroid.

The phenomena of precession and nutation introduce a new

element to our consideration, namely the moment of inertia of

the earth about an equatorial axis. The observation of these

phenomena enables us to determine the numerical value of the

quantity k,
if we suppose e known otherwise. Now, indepen-

dently of any hypothesis as to original fluidity, it is probable that

the earth consists approximately of spherical strata of equal

density. Any material deviation from this arrangement could

hardly fail to produce an irregularity in the variation of gravity,

and consequently in the form of the surface, since we know that

the surface is one of equilibrium. Hence we may assume, when

not directly considering the ellipticity, that the density p is a

function of the distance r from the centre. Now the mean density

of the earth as compared with that of water is known from the

result of Cavendish's experiment, and the superficial density

dicular to the surface, as,
;

well as the form of the surface, be given independently, it

may be shewn that the attraction on an external particle follows, independently of

any hypothesis respecting the distribution of matter in the interior of the earth.

It may be remarked that if tire surface be supposed to differ from a surface of

equilibrium by a quantity of the order of the ellipticity, the component of gravity

in a direction perpendicular to the surface may be considered equal to the whole

force of gravity. Since however, as a matter of fact, the surface w a surface of

equilibrium, if very' trifling irregularities be neglected, it seems better to assume it

to be such, and then the law of the variation of gravity, as well as the attraction on

the moon, follow from the form of the surface.

It must not here be supposed that these irregularities are actually neglected.

Such an omission would ill accord with the accuracy of modem measures. In

geodetic operations and pendulum experiments, the direct observations are in fact

reduced to the level of the sea, and so rendered comparable with a theory in which

It is supposed that the earth’s surface is accurately a surface of equilibrium. I have

considered this subject in detail in the paper referred to at the beginning of this

article, which has since been read before the Cambridge Philosophical Society.
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may be considered equal to that of ordinary rocks, or about

times that of water
;
and therefore the ratio of the mean to the

superficial density may be considered known. Take for simplicity

the earth’s radius for the unit of length, and let p — p x
when r — 1.

From the mean density and the value of tc we know the ratios

r
1 r

of the integrals I pr2dr and pr^dr to pr Now it is probable
J o •> 0

that p increases, at least on the whole, from the surface to the

centre. If we assume this to be the case, and restrict p to satisfy

the conditions of becoming equal to p x
when r = l, and of giving

to the two integrals just written their proper numerical values,

it is evident that the law of density cannot range within any very

wide limits; and speaking very roughly we may say that the

density is determined.

Now the preceding results will not be sensibly affected by

giving to the nearly spherical strata of equal density one form or

another, but the form of the surface will be materially affected.

The surface in fact might not be spheroidal at all, or if spheroidal,

the ellipticity might range between tolerably wide limits. But

according to the hypothesis of original fluidity the surface ought

to be spheroidal, and the ellipticity ought to have a certain

numerical value depending upon the law of density.

If then there exist a law of density, not in itself improbable

d priori
,
which satisfies the required conditions respecting the

mean and superficial densities, and which gives to the ellipticity

and to the annual precession numerical values nearly agreeing

with their observed values, we may regard this law not only as

in all probability representing approximately the distribution of

matter within the earth, but also as furnishing, by its accordance

with observation, a certain degree of evidence in favour of the

hypothesis of original fluidity. The law of density usually con-

sidered in the theory of the figure of the earth is a law of this

kind.

It ought to be observed that the results obtained relative to

the attraction of the earth remain just the same whether we sup-

pose the earth to be solid throughout or not
;
but in founding any

argument on the numerical value of k we are obliged to consider

the state of the interior. Thus if the central portions of the earth

be, as some suppose, in a state of fusion, the quantity Eg?k must
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be taken to mean the moment of inertia of that solid, whatever

it may be, which is equivalent to the solid crust together with

its fluid or viscous contents. On this supposition it is even con-

ceivable that k should depend on the period of the disturbing

force, so that different numerical values of tc might have to he used

in the precession and in the lunar nutation, in which case the

mass of the moon deduced from precession and nutation would not

be quite correct.

Additional Propositions respecting Attractions

.

Although the propositions at the commencement of this paper

were given merely for the sake of the applications made of them

to the figure of the earth, there are a few additional propositions

which are so closely allied to them that they may conveniently be

added here.

Prop. VII*. If V be the potential of any mass M
x>
and ifM

0

be the portion ofM
t
contained within a closed surface 3,

//sr TO,

n and dS having the same meaning as in Prop, iv., and the inte-

gration being extended to the whole surface 8.

* This and Prop. iv. are expressed respectively by equations (7) and (8) in tbe

article by Professor Thomson already referred to (Yol, m. p. 203), where a demon-

stration of a theorem comprehending both founded on the equation

dh) dsv (Pv . w
is given. In the present paper a different order of investigation is followed ; direct

geometrical demonstrations of the equations

dV-dS=- 4ltM0 in another,

are given in Props, iv. and vir. ; and a new proof of the equation (a) is deduced

from thorn in Prop. vnr.

Those equations may bo obtained as very particular cases of a general theorem

originally given by Green (Essay on Electricity
, p. 12). It win be sufficient to

suppose U»1 in Green’s equation, and to observe that dw~ - dn, and BV-0
or® -4wp% if V be taken to denote the potential of the mass whose attraction is

considered.

//
dV
dn

dS- Q in one case, and
//
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Let m' "be the mass of an attracting particle situated at the

point P' inside S. Through P' draw a right line L
}
and produce it

indefinitely in one direction. This line will in general cut 8 in

one point; hut if S be a re-entrant* surface it may he cut by L in

three, five, or any odd number of points. About L describe a

conical surface containing an infinitely small solid angle a, and let

the rest of the notation be as in Prop. IV. In this case the angles

0
X , 62 , will he alternately obtuse and acute, and we shall have

717
m'

t a \
m'

N^-^cos^-e,) — —

2

cos 8
1 ,

A
t
= a

r

2
sec (tt — 0

X)
= — ar* sec 9

X >

and therefore N
X
A

X
= — am’.

Should there be more than one point of section, the terms PT
%
A %9

J¥
3
A

q ,
&c. will destroy each other two and two, as in Prop. IV.

Now all angular space around P' may he divided into an infinite

number of solid angles such as a, and it is evident that the whole

surface 8 will thus be exhausted. We get therefore

limit of tNA = — 'tarn! = — m't ol
;

or, since 2a = 47r, JJNd8— — 47rm'.

The same formula will apply to any other internal particle, and it

has been shewn in Prop. iv. that for an external particle JfNdS= 0.

Hence, adding together all the results, and taking N now to refer

to the attraction of all the particles, both internal and external, wo
get JJNdS= — 47rjhf

0
. But dV/dn, which proves the proposi-

tion.

Prop. viii. At an internal point (a?, y,
z) about which the

density is p, the potential V satisfies the equation

d2V
,

d2V
,

d2V
+W + dI

= ~ Pda

f

.(28).

Consider the elementary parallelepiped dx dy dz, and apply to

it the equation (27). For the face dy dz whose abscissa is x
}
the

f fdV
value of

J
I^ ultimately — d VJdx . dy dz

,
and for the opposite

face it is ultimately 4- dx ^
dydz\ and therefore for this

* This term is here used, and has been already used in the demonstration of

P/op. iv., to denote a closed surface which can be cut by a tangent plane.
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pair of faces the value of the integral is ultimately d2 V/dx2
. dx dy dz .

Treating the two other pairs of faces in the same way, we get ulti-

mately for the value of the first member of equation (27),

-arr d?v dfv
k
dx2 dz2

But the density being ultimately constant, the value ofM0i which

is the mass contained within the parallelepiped, is ultimately

p dx dy dz3
whence bv passing to the limit we obtain equation

(28).

The equation which (28) becomes when the polar co-ordinates

r, d
,

cj) are employed in place of rectangular, may readily be

obtained by applying equation (27) to the elementary volume

dr . rdd . r sin ddcfr, or else it may be derived from (28) by transfor-

mation of co-ordinates. The first member of the transformed

equation has already been written down (see equation (10),) ;
the

second remains — 4nrp.

Example of the application of equation (28).—In order to give

an example of the practical- application of this equation, let us

apply it to determine the attraction which a sphere composed of

concentric spherical strata of uniform density exerts on an internal

particle.

Refer the sphere to polar co-ordinates originating at the centre.

Let p be the density, which by hypothesis is a function of r, R the

external radius, V the potential of the sphere, which will evidently

be a function of r only. For a point within the sphere we get

from (28)

d2V 2 dV
dr2 r dr ^ (29).

For a point outside the sphere the equation which Fhas to satisfy

is that which would be obtained from (29) by replacing the second

member by zero
;
but we may evidently apply equation (29) to all

space provided we regard p as equal to zero outside the sphere.

Since the first member of (29) is the same thing as l/r .d
2
rV/dr*,

we get
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Now we get by integration by parts,

/ (jprdr) dr = rfprdr —fpr
2dr

,

whence V= — irr/prdr + pr
2
dr,

where the arbitrary constants are supposed to bo included in the

signs of integration. Now V vanishes at an infinite distance, and

does not become infinite at the centre, and therefore the second

integral vanishes when r = 0, and the first when r = co, or, which

is the same, when r = JR, since p = 0 when r>R. We get there-

fore finally,

rR 4* 77" fr

V= 4-7r I pr dr + — I pr2
cZr.

Jr J o

•If i*
7

be the required force of attraction, we have F = — d V/dr
;
and

observing that the two terms arising from the variation of the

limits destroy each other, we get

Now 4:77*
j

pr*dr is the mass contained within a sphere de-
J 0

scribed about the centre with a radius r, and therefore the attrac-

tion is the same as if the mass within this sphere were collected at

its centre, and the mass outside it were removed.

The attraction of the sphere on an external particle may be

considered as a particular case of the preceding, since we may first

suppose the sphere to extend beyond the attracted particle, and

then make p vanish when r > R.

Before concluding, one or two more known theorems may b©

noticed, which admit of being readily proved by the method

employed in Prop. V.

Prop. IX. If T be a space which contains none of the attract-

ing matter, the potential V cannot be constant throughout any
finite portion of T without having the same constant value through-

out the whole of the space T and at its surface. For if possible

let Fhave the constant value A throughout the space T
x>
which

forms a portion of T, and a greater or less value at the portions of

T adjacent to Tv Let R be a region of T adjacent to T
x
where V

is greater than A. By what has been already remarked, V must
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increase continuously in passing from T
t
into R. Draw a closed

surface <r lying partly within T
1
and partly within R> and call the

portions lying in T
x
and R

,
<rv cr

2
respectively. Then if v be a

normal to <r, drawn outwards, d V/dv will be positive throughout cr
t

if oq be drawn sufficiently close to the space T
x
(see Prop. V. and

note), and dV/dv is equal to zero throughout the surface <r
2 ,

since

F is constant throu

taken throughout the whole surface cr, will be positive, which is

contrary to Prop. IV. Hence V cannot be greater than A in any

portion of T adjacent to Tv and similarly it cannot be less, and

therefore F must have the constant value A throughout T\ and
therefore, on account of the continuity of F, at the surface of T.

Combining this with Prop. v. Cor. 1, we see that if F be

constant throughout the whole surface of a space T which contains

no attracting matter, it will have the same constant value through-

out T\ but if Fbe not constant throughout the whole surface, it

cannot be constant throughout any finite portion of T, but only

throughout a surface. Such a surface cannot be closed, but must

abut upon the surface of T9 since otherwise F would be constant

within it.

Prop. x. The potential V cannot admit of a maximum or

minimum value in the space T.

It appears from the demonstration of Prop. v. that V cannot

have a maximum or minimum value at a point, or throughout a

line, surface, or space, which is isolated in T. But not even can F
have the maximum or minimum value V

1
throughout T

t
if T

t

reach up to the surface 8 of T\ though the term maximum or

minimum is not strictly applicable to this case. By Prop. ix. F
cannot have the value V

1
throughout a space, and therefore 1\ can

only be a surface or a line.

If possible, let V have the maximum value F
t
throughout a

line L which reaches up to 8. Consider the loci of the points

where F has the successive values F
2 , Fs ..., decreasing by infi-

nitely small steps from Vv In the immediate neighbourhood of

L
,
these loci will evidently be tube-shaped surfaces, each lying

outside the preceding, the first of which will ultimately coincide

with L. Let s be an element of L not adjacent to 8, nor reaching

ghout the space T
x ;

and therefore
'dV,

dv
d<r

'
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up to the extremity of Z, in case Z terminate abruptly. At eacli

extremity of s draw an infinite number of lines of force, that is,

lines traced from point to point in the direction of the force, and

therefore perpendicular to the surfaces of equilibrium. The assem-

blage of these lines will evidently constitute two surfaces cutting

the tubes, and perpendicular to s at its extremities. Call the

space contained within the two surfaces and one of the tubes T%>

and apply equation (5) to this space. Since V is a maximum at L ,

dV/dn is negative for the tube surface of T
t ,

and it vanishes for

the other surfaces, as readily follows from equation (4). Hence

\\

<

~Sn ^ ta^en fhrough°ut whnle surface T
2 ,

is negative,

which is contrary to equation (5). Hence V cannot have a maxi-

mum value at the lineZ
;
and similarly it cannot have a minimum

value.

It may be proved in a similar manner that V cannot have a

maximum or minimum value V
x
throughout a surface S

1
which

reaches up to S. For this purpose it will be sufficient to draw p,

line of force through a point in 8V and make it travel round an

elementary area a which forms part of Sv and to apply equation

(5) to the space contained between the surface generated by this

line, and the two portions, one on each side of 8
X ,

of a surface of

equilibrium corresponding to a value of V very little different

from V
t

.

It should be observed that the space T considered in this

proposition and in the preceding need not be closed : all that is

requisite is that it contain none of the attracting mass. Thus, for

instance, f may be the infinite space surrounding an attracting

mass or set of masses.

It is to be observed also, that although attractive forces have

been spoken of throughout, all that has been proved is equally

true of repulsive forces, or of forces partly attractive and partly

repulsive. In fact, nothing in the reasoning depends upon the

sign of m
;
and by making m negative we pass to the case of

repulsive forces.

Prop. XI. If an isolated particle be in equilibrium under the

action of forces varying inversely as the square of the distance, the

equilibrium cannot be stable with reference to every possible

s. II. 9
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displacement, nor unstable, but must be stable with reference to

some displacements and unstable with reference to others; and

therefore the equilibrium of a free isolated particle in such circum-

stances must be unstable*.

For we have seen that V cannot be a maximum or minimum,

and therefore either Vmust be absolutely constant, (as for instance

within a uniform spherical shell), in which case the particle may
be in equilibrium at any point of the space in which it is situated,

or else, if the particle be displaced along any straight line or curve,

for some directions of the line or curve V will be increasing and

for some decreasing. In the former case the force resolved along

a tangent to the particle’s path will be directed from the position

of equilibrium, and will tend to remove the particle still farther

from it, while in the latter case the reverse will take place.

* This theorem was first given by Mr Earnshaw in his memoir on Molecular

Forces read at the Cambridge Philosophical Society, March 18, 1889 [Tram.

Vol. to.). See also a paper by Professor Thomson in the first series of this Journal,

Vol iv. p. 223.



[From the Transactions of the Cambridge Philosophical Society, Vol. vin. p. 672.]

On the Variation of Gravity at the Surface of the

Earth.

[Read April 23, 1849.]

On adopting the hypothesis of the earth’s original fluidity,

it has been shewn that the surface ought to be perpendicular to

the direction of gravity, that it ought to be of the form of an oblate

spheroid of small ellipticity, having its axis of figure coincident

with the axis of rotation, and that gravity ought to vary along the

surface according to a simple law, leading to the numerical relation

between the ellipticity and the ratio between polar and equatorial

gravity which is known by the name of Clairaut’s Theorem.

Without assuming the earth’s original fluidity, but merely sup-

posing that it consists of nearly spherical strata of equal density,

and observing that its surface may be regarded as covered .by a

fluid, inasmuch as all observations relating to the earth’s figure

are reduced to the level of the sea, Laplace has established a

connexion between the form of the surface and the variation of

gravity, which in the particular case of an oblate spheroid agrees

with the connexion which is found on the hypothesis of original

fluidity. The object of the first portion of this paper is to establish

this general connexion without making any hypothesis whatsoever

respecting the distribution of matter in the interior of the earth,

but merely assuming the theory of universal gravitation. It ap-

pears that if the form of the surface be given, gravity is determined

throughout the whole surface, except so far as regards one arbitrary

constant which is contained in its complete expression, and which

9—2
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may be determined by the value of gravity at one place. Moreover

the attraction of the earth at all external points of space is de-

termined at the same time; so that the earth’s attraction on the

moon, including that part of it which is due to the earth s ob-

lateness, and the moments of the forces of the sun and moon

tending to turn the earth about an equatorial axis, are found

quite independently of the distribution of matter within the earth.

The near coincidence between the numerical values of the

earth’s ellipticity deduced independently from measures of arcs,

from the lunar inequalities which depend on the earth’s oblate-

ness, and, by means of Clairaut’s Theorem, from pendulum ex-

periments, is sometimes regarded as a confirmation of the hy-

pothesis of original fluidity. It appears, however, that the form

of the surface (which is supposed to be a surface of equilibrium),

suffices to determine both the variation of gravity and the attrac-

tion of the earth on an external particle* and therefore the coinci-

dence in question, being a result of the law of gravitation, is no

confirmation of the hypothesis of original fluidity. The evidence

in favour of this hypothesis which is derived from the figure and

attraction of the earth consists in the perpendicularity of the

surface to the direction of gravity, and in the circumstance that

the surface is so nearly represented by an oblate spheroid having

for its axis the axis of rotation. A certain degree of additional

evidence is afforded by the near agreement between the observed

ellipticity and that calculated with an assumed law of density

which is likely a priori to be not far from the truth, and which

is confirmed, as to its general correctness, by leading to a value

for the annual precession which does not much differ from the

observed value.

* It has "been remarked by Professor O’Brien (Mathematical Tract#, p. 56) that
if we have given the form of the earth’s surface and the variation of gravity, we
have data for determining the attraction of the earth on an external particle, the
earth being supposed to consist of nearly spherical strata of equal density; so that

.
the motion of the moon furnishes no additional confirmation of the hypothesis of
original fluidity.

If we have-given the component of the attraction of any mass, however irregular
as to its form and interior- constitution, in a direction perpendicular to the surface
throughout the whole of the surface, we have data for determining the attraction at
every external point, as well as the components of the attraction at the surface in
two directions perpendicular to the normal. The corresponding proposition in
Fluid Motion is self-evident.
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Since the earth’s actual surface is not strictly a surface of

equilibrium, on account of the elevation of the continents and

islands above the sea level, it is necessary to consider in the first

instance in what manner observations would have to be reduced

in order to render the preceding theory applicable. It is shewn in

Art. 13 that the earth may be regarded as bounded by a surface of

equilibrium, and therefore the expressions previously investigated

may be applied, provided the sea level be regarded as the hounding

surface, and observed gravity be reduced to the level of the sea

by taking account only of the change of distance from the earth’s

centre. Gravity reduced in this manner would, however, be liable

to vary irregularly from one place to another, in consequence

of the attraction of the land between the station and the surface

of the sea, supposed to be prolonged underground, since this

attraction would be greater or less according to the height of the

station above the sea level. In order therefore to render the

observations taken at different places comparable with one another,

it seems best to correct for this attraction in reducing to the level

of the sea; but since this additional correction is introduced in

violation of the theory in which the earth’s surface is regarded

as one of equilibrium, it is necessary to consider what effect the

habitual neglect of the small attraction above mentioned produces

on the values of mean gravity and of the ellipticity deduced from

observations taken at a number of stations. These effects are

considered in Arts. 17, 18.

Besides the consideration of the mode of determining the values

of mean gravity, and thereby the mass of the earth, and of the

ellipticity, and thereby the effect of the earth’s oblate ness on the

motion of the moon, it is an interesting question to consider

whether the observed anomalies in the variation of gravity may
be attributed wholly or mainly to the irregular distribution of

land and sea at the surface of the earth, or whether they must

be referred to more deeply seated causes. In Arts. 19, 20, I have

considered the effect of the excess of matter in islands and conti-

nents, consisting of the matter which is there situated above the

actual sea level, and of the defect of matter in the sea, consisting

of the difference between the mass of the sea, and the mass of an

equal bulk of rock or clay. It appears that besides the attraction

of the land lying immediately underneath a continental station,



134 OX THE VARIATION OF GRAVITY

between it and the level of the sea, the more distant portions of

the continent cause an increase in gravity, since the attraction

which they exert is not wholly horizontal, on account of the cur-

vature of the earth. But besides this direct effect, a continent

produces an indirect effect on the magnitude of apparent gravity.

For the horizontal attraction causes the verticals to point more

inwards, that is, the zeniths to be situated further outwards, than

if the continent did not exist; and since a level surface is every-

where perpendicular to the vertical, it follows that the sea level

on a continent is higher than it would be at the same place if the

continent did not exist. Hence, in reducing an observation taken

at a continental station to the level of the sea, we reduce it to

a point more distant from the centre of the earth than if the

continent were away
;
and therefore, on this account alone, gravity

is less on the continent than on an island. It appears that this

latter effect more than counterbalances the former, so that on the

whole, gravity is less on a continent than on an island, especially

if the island be situated in the middle of an ocean. This circum-

stance has already been noticed as the result of observation. In
consequence of the inequality to which gravity is subject, de-

pending on the character of the station, it is probable that the

value of the ellipticity which Mr Airy has deduced from his dis-

cussion of pendulum observations is a little too great, on account
of the decided preponderance of oceanic stations in low latitudes

among the group of stations where the observations were taken.

The alteration of attraction produced by the excess and defect
of matter mentioned in the preceding paragraph does not con-
stitute the whole effect of the irregular distribution of land and
sea, since if the continents were cut off at the actual sea level,

and the sea were replaced by rock and clay, the surface so formed
would no longer he a surface of equilibrium, in consequence of
the change produced in the attraction. In Arts 25—27, I have
investigated an expression for the reduction of observed gravity to
what would be observed if the elevated solid portions of the earth
were to become fluid, and to run down, so as to form a level bottom
for the sea, which in that case would cover the whole earth. The
expressions would be very laborious to work out numerically, and
besides, they require data, such as the depth of the sea in a great
many places, &c., which we clo not at present possess • but from a
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consideration, of the general character of the correction, and from

the estimation given in Art. 21 of the magnitude which such

corrections are likely to attain, it appears probable that the ob-

served anomalies in the variation of gravity are mainly due to the

irregular distribution of land and sea at the surface of the earth.

1. Conceive a mass whose particles attract each other ac-

cording to the law of gravitation, and are besides acted on by a

given force /, which is such that if X, T, Z be its components along

three rectangular axes, Xdx -f Ydy + Zdz is the exact differential

of a function U of the co-ordinates. Call the surface of the mass S,

and let V be the potential of the attraction, that is to say, the

function obtained by dividing the mass of each attracting particle

by its distance from the point of space considered, and taking the

sum of all such quotients. Suppose 8 to be a surface of equi-

librium. The general equation to such surfaces is

V+ U=c (1),

where c is an arbitrary constant
;
and since S is included among

these surfaces, equation (1) must be satisfied at all points of the

surface S,
when some one particular value is assigned to c. For

any point external to 8, tlie potential V satisfies, as is well known,

the partial differential equation

cPV d?V d2V
da? dyl dz2 (2);

and evidently V cannot become infinite at any such point, and

must vanish at an infinite distance from 8. Now these conditions

are sufficient for the complete determination of the value of V for

every point external to S, the quantities U and c being supposed

known. The mathematical problem is exactly the same as that of

determining the permanent temperature in a homogeneous solid,

which extends infinitely around a closed space 8, on the conditions,

(1) that the temperature at the surface 8 shall be equal to c — 27,

(2) that it shall vanish at an infinite distance. This problem is

evidently possible and determinate. The possibility has moreover

been demonstrated mathematically.

If TJ alone be given, and not c, the general value of V will

contain one arbitrary constant, which may be determined if we
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know the value of V, or of one of its differential coefficients, at

one point situated either in the surface 8 or outside it. When V
is known, the components of the force of attraction will be obtained

by mere differentiation.

Nevertheless, although we know that the problem is always

determinate, it is only for a very limited number of forms of the

surface 8 that the solution has hitherto been effected. The

most important of these forms is the sphere. When 8 has very

nearly one of these forms the problem may be solved by approxi-

mation.

2. Let us pass now to the particular case of the earth. Although

the earth is really revolving about its axis, so that the bodies on

its surface are really describing circular orbits about the axis of

rotation, we know that the relative equilibrium of the earth itself,

or at least its crust, and the bodies on its surface, would not be

affected by supposing the crust at rest, provided that we introduce,

in addition to the attraction, that fictitious force which we call the

centrifugal force. The vertical at any place is determined by the

plumb-line, or by the surface of standing fluid, and its determi-

nation is therefore strictly a question of relative equilibrium. The

intensity of gravity is determined by the pendulum; but although

the result is not mathematically the same as if the earth were at

rest and acted on by the centrifugal force, the difference is alto-

gether insensible. It is only in consequence of its influence on

the direction and magnitude of the force of gravity that the earth’s

actual motion need he considered at all in this investigation : the

mere question of attraction has nothing to do with motion; and

the results arrived at will be equally true whether the earth be

solid throughout or fluid towards the centre, even though, on the

latter supposition, the fluid portions should be in motion, relatively

to the crust.

We know, as a matter of observation, that the earth’s surface

is a surface of equilibrium, if the elevation of islands and conti-

nents above the level of the sea be neglected. Consequently the

law of the variation of gravity along the surface is determinate, if

the form of the surface be given, the force/ of Art. I being in this

case the centrifugal force. The nearly spherical form of the

surface renders the determination of the variation easy.
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3. Let the earth be referred to polar co-ordinates, the origin

being situated in the axis of rotation, and coinciding with the

centre of a sphere which nearly represents the external surface.

Let r be the radius vector of any point, 6 the angle between the

radius vector and the northern direction of the axis,
<fi

the angle

which the plane passing through these two lines makes with a

plane fixed in the earth and passing through the axis. Then the

equation (2) which V has to satisfy at any external point becomes

by a common transformation

d\rV 1 d (n . a dV\ %

1 (PV_
r

dr 2 +
sin 0 dd t

8m
dd )

+
sin*0 dp (

3).

Let co be the angular velocity of the earth
;
then

sin
2
6,

and equation (1) becomes

V+ V sin
2 0 = c

which has to be satisfied at the surface of the earth.

(
4),

For a given value of r, greater than the radius of the least

sphere which can be described about the origin as centre so as to

lie wholly without the earth, V can be expanded in a series of

Laplace’s functions

Tro+F1 + F2 -f... ;

and therefore in general, provided r be greater than the radius of

the sphere above mentioned, V can be expanded in such a series,

but the general term Vn will be a function of r, as well as of

6 and <j>. Substituting the above series in equation (3), and
observing that from the nature of Laplace’s functions

1 d
sin 6 dd

dV„\

dd)
i

sin
2 8

-«(» + !) K <*),

weget 2 jr — -n(n + l) F.} = 0,

where all integral values of n from 0 to oo are to be taken.

Now the differential coefficients of Vn with respect to r are
Laplace’s functions of th,e nth order as well as Vn itself

; and since
a series of Laplace’s functions cannot be equal to zero unless
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the Laplace’s functions of the same order are separately equal

to zero, we must have

r-^-n{n+l) F>0 (6).

The integral of this equation is

where Yn and Zn are arbitrary constants so far as r is concerned,

but contain 0 and <j>. Since these functions are multiplied by

different powers of r, Vn
cannot be a Laplace's function of the nth

order unless the same be true of Yn and Zn . We have for the

complete value of V

L
v*

m.+Z0 + Zjr +

Now V vanishes when r = oo
,
which requires that Z

0
= 0, Zx — 0,

&c.
;
and therefore

Y Y Y
r ir r (7)-

4. The preceding equation will not give the value of the

potential throughout the surface of a sphere which lies partly

within the earth, because although V,
as well as any arbitrary but

finite function of 0 and <£, can be expanded in a series of Laplace's

functions, the second member of equation (3) is not equal to

zero in the case of an internal particle, but to — 4t7rpr
2

,
where

p is the density. Nevertheless we may employ equation (7)

for values of r corresponding to spheres which lie partly within

the earth, provided that in speaking of an internal particle we
slightly change the signification of V} and interpret it to mean,

not the actual potential, but what would be the potential if the

protuberant matter were distributed within the least sphere which

cuts the surface, in such a manner as to leave the potential un-

changed throughout the actual surface. The possibility of such a

distribution will be justified by the result, provided the series to

which we are led prove convergent. Indeed, it might easily be shewn

that the potential at any internal point near the surface differs

from what would be given by (7) by a small quantity of the second

order only,* but its differential coefficient with respect to r, which
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gives the component of the attraction along the radius vector,

differs by a small quantity of the first order. We do not, how-

ever, want the potential at any point of the interior, and in fact

it cannot be found without making some hypothesis as to the dis-

tribution of the matter within the earth.

5. It remains now to satisfy equation (4). Let r = a (1 + u)

be the equation to the earth’s surface, where u is a small quantity

of the first order, a function of 0 and <£. Let u be expanded in a

series of Laplace’s functions u
0 + u

x
4- . . . The term u

0
will vanish

provided we take for a the mean radius, or the radius of a sphere

of equal volume. We may, therefore, take for the equation to

the surface

r = a(l + w
1 + w

2 -f ...) (8).

If the surface were spherical, and the earth had no motion of

rotation, V would be independent of 8 and <£, and the second

member of equation (7) would be reduced to its first term. Hence,

since the centrifugal force is a small quantity of the first order, as

well as u, the succeeding terms must be small quantities of the

first order
;

so that in substituting in (7) the value of r given by

(8) it will be sufficient to put r = a in these terms. Since the

second term in equation (4) is a small quantity of the first order,

it will be sufficient in that term likewise to put r = a. We
thus get from (4), (7), and (8), omitting the squares of small

quantities,

v V V
— (1 -u - u

2
- w,...) -4 -~

2

l + -I + ... 4- -5- sin
2
8 = c (9).

a ' 1 2 3 a a 2 w
The most general Laplace’s function of the order 0 is a con-

stant
;
and we have

sin
2 8=§ + (£- cos

2
0) }

of which expression the two parts are Laplace’s functions of the

orders 0, 2, respectively. We thus get from (9), by equating to

zero Laplace’s functions of the same order,

F0= ac~|a)V,

Y
x
= aY0

uv

Y
2
= a*Y

Q
u

2 — \ a)V (J
— cos

2
8),

F
3
= azYQ

u
3 ,

&c.
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The first of these equations merely gives a relation between

the arbitrary constants F
0
and c; the others determine Tv F

2 ,

&c.
;
and we get by substituting in (7)

"XT XT /I
*
^ ^ 'N CO a r

^

2 /]\V=Y
°{r

+ ? Ul +
r
sU* + "'

J- 27^- cos 0- .(10).

6. Let <7 be the force of gravity at any point of the surface of

the earth, dn an element of the normal drawn outwards at that

point; then g = — d(V+ U)/dn. Let yjr be the angle between

the normal and the radius vector
;
then g cos is the resolved

part of gravity along the radius vector, and this resolved part is

equal to — d ( V+ TJ) /dr. Now ^ is a small quantity of the first

order, and therefore we may put cos ^ = 1, which gives

g = -

where, after differentiation, r is to be replaced by the radius vector

of the surface, which is given by (8). We thus get

9 =p (
x ~ 2«i

~ 2m
2 -2

O

t + 3u
2 + 4u

3
. .

.)

— § co
2a — cos

2

6) — a?

a

(f + £— cos
2
9),

which gives, on putting

F,
-f a.

2a= <?, G
: m (11 ),

and neglecting squares of small quantities,

g= G {1 — \m — cos
2
9) + u

2 + 2w
s + 3m

4 } (12).

In this equation G is the mean value of g taken throughout
/*7r r2tr

the whole surface, since we know that un sin 6 dddcj> = 0, if n

be different from zero. The second of equations (11) shews that m
is the ratio of the centrifugal force at a distance from the axis

equal to the mean distance to mean gravity, Or, which is the same,

since the squares of small quantities are neglected, the ratio of the

centrifugal force to gravity at the equator. Equation (12) makes
'known the variation of gravity when the form of the surface is

given, the surface being supposed to be one of equilibrium
;

and,

conversely, equation (8) gives the form of the surface if the varia-

tion of gravity be known. It may be observed that on the latter



AT THE SURFACE OF THE EARTH. 141

supposition there is nothing to determine u
%

. The most general

form of u
x
is

a sin 6 cos <j> + /3 sin 9 sin <j> + y cos 9
,

where a, /3, 7 are arbitrary constants; and it is very easy to prove

that the co-ordinates of the centre of gravity of the volume are

equal to ax, a/3, ay respectively, the line from which 9 is measured

being taken for the axis of z, and the plane from which (j> is

measured for the plane of xz. Hence the term u
x
in (8) may be

made to disappear by taking for origin the centre of gravity of the

volume. . It is allowable to do this even should the centre of

gravity fall a little out of the axis of rotation, because the term

involving the centrifugal force, being already a small quantity of

the first order, would not be affected by supposing the origin to be

situated a little out of the axis.

Since the variation of gravity from one point of the surface to

another is a small quantity of the first order, its expression will

remain the same whether the earth be referred to one origin or

another nearly coinciding with the centre, and therefore a know-

ledge of the variation will not inform us what point has been

taken for the origin to which the surface has been referred.

7. Since the angle between the vertical at any point and the

radius vector drawn from the origin is a small quantity of the first

order, and the angles 9, <f>
occur in the small terms only of equa-

tions (8), (10), and (12), these angles may be taken to refer to the

direction of the vertical, instead of the radius vector.

8. IfE be the mass of the earth, the potential of its attraction

at a very great distance r is ultimately equal to Ejr. Comparing

this with (10), we get Y
0
~E, and therefore, from the first of

equations (11),

E= Ga2 + § co
2a3 = Ga2

(1 + § m) (13),

which determines the mass of the earth from the value of G deter-

mined by pendulum experiments.

9. If we suppose that the surface of the earth may be repre-

sented with sufficient accuracy by an oblate spheroid of small ellip-

ticity, having its axis of figure coincident with the axis of rotation,

equation (8) becomes

r = a [1 + e (£
— cos

2
6)} (14),
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where e is a constant which may be considered equal to the ellip-

ticity. We have therefore in this case u
t
= 0, u

2 = £ — cos
2

6, un = 0

when n> 2; so that (12) becomes

g=G{l — (|m - e
) (i-cos* 9)} (15),

which equation contains Clairaut’s Theorem. It appears also from

this equation that the value of Q which must be employed in (13)

is equal to gravity at a place the square of the sine of whose

latitude is

10. Retaining the same supposition as to the form of the

surface, we get from (10), on replacing Y0
by E

,
and putting in the

small term at the end toV = mGa4, = mEa

\

T? Fa*
+(e- I'm) =pr (i-coa'0) (16).

Consider now the effect of the earth's attraction on the moon.

The attraction of any particle of the earth on the moon, and there-

fore the resultant attraction of the whole earth, will be very nearly

the same as if the moon were collected at her centre. Let there-

fore r be the distance of the centre of the moon from that of the

earth, 6 the moon’s North Polar Distance, P the accelerating force

of the earth on the moon resolved along the radius vector, Q the

force perpendicular to the radius vector, which acts evidently in a

plane passing through the earth’s axis
;
then

P = - dV n==
dr

dr ’ ^ rdd *

whence we get from (16)

F = p + 3(e-$m)^ (£-cos2
0),

Fa*
Q = 2 (e- \m) sin 0 cos 6 (17).

The moving forces arising from the attraction of the earth on
the moon will be obtained by multiplying by M

y
where M denotes

the mass of the moon
; and these are equal and opposite to the

moving forces arising from the attraction of the moon on the earth.

The component MQ of the whole moving force is equivalent to an
equal and parallel force acting at the centre of the earth and a
couple. The accelerating forces acting on the earth will be
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obtained by dividing by E; and since we only want to determine

the relative motions of the moon and earth, we may conceive equal

and opposite accelerating forces applied both to the earth and to

the moon, which comes to the same thing as replacing E by E+M
in (17). If K be the moment of the couple arising from the

attraction of the moon, which tends to turn the earth about an

equatorial axis, K = MQr, whence

. MEa2
. AK= 2 (e — \m) —pr~ sin 6 cos 9 (18).

The same formula will of course apply, mutatis mutandis
,
to the

attraction of the sun.

11. The spheroidal form of the earth's surface, and the cir-

cumstance of its being a surface of equilibrium, will afford us some

information respecting the distribution of matter in the interior.

Denoting by oc, 3/, z the co-ordinates of an internal piarticle whose

density is p, and by x
} y,

z those of the external point of space to

which V refers, we have

y— [[[ P ty'
ẑ

'

-JJJ fa-aO'+to-W + iz-tT}*’

the integrals extending throughout the interior of the earth.

Writing dm! for p dx dy’ dz, putting A, //,, v for the direction-

cosines of the radius vector drawn to the point (x, y,
z), so that

x = \r, y = pur, z — vr, and expanding the radical according to

inverse powers of r, we get

V=lfffdM + 2 -Jffx'dm' + ~2 (3X2

-m/jVW

+ 2XPlSf*' V dm + (19);

% denoting the sum of the three expressions necessary to form a

symmetrical function. Comparing this expression for V with that

given by (10), which in the present case reduces itself to (16), we
get T

0 = fffdm =E, as before remarked, and

JJJx dm = 0, JJJy dm! = 0, JJJz dm' = 0 . .

.

i t (3A2 -
1) JJJx

' 2 dm' + StXpi JJJx' y dm!

= (e — \m) Ea2

(£
— cos

2
6).
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together with other equations, not written down, obtained by-

equating to zero the coefficients of 1/r
4

,
1/r

6
&c. in (19).

Equations (20) shew that the centre of gravity of the mass

coincides with the centre of gravity of the volume. In treating

equation (21), it is to be remarked that A, v are n°f independent,

but connected by the equation A2 + y? + v
2 = 1. If now we insert

\2 + fx+v2
as a coefficient in each term of (21) which does not

contain A, y,
or v,

the equation will become homogeneous with

respect to .A, y, v, and will therefore only involve the two inde-

pendent ratios which exist between these three quantities, and

consequently we shall have to equate to zero the coefficients of

corresponding powers of A, y}
v. By the transformation just men-

tioned, equation (21) becomes, since cos 0 = v,

2 (A
2 - \y

2 - K) JJJx'
2 dm' + 32A/xfjfx'y’dm

= (e - \m) Eai* (£X2+^ - £»*) ; .

and we get

JJJx'ydm = 0, JfJy'zdm =0, Jffz'xdm = 0 (22),

fJJaPdm' - ifW - 1

=ffjy'
2dm' — \ JJJz'

2dm' -
(28)

= -hJJf*'
2
dm>+lfffx'*dm' + ifjfy’dm'

=H6 ” im) J

Equations (22) shew that the co-ordinate axes are principal

axes. Equations (23) give in the first place

fffx>dm'=fffy'*dm',

which shews that the moments of inertia about the axes of x and

y are equal to each other, as might have been seen at once from

(22), since the principal axes of x and y are any two rectangular

axes in the plane of the equator. The two remaining equations of

the system (23) reduce themselves to one, which is

Jjfx
2dm - fjfz'

2dm = § (e

-

\ m) Ed

\

If we denote the principal moments of inertia by A, A, C, this

equation becomes

Ea 2
(24),

which reconciles the expression for the couple K given by (18)

with the expression usually given, which involves moments of

inertia, and which, like (18), is independent of any hypothesis as

to the distribution of the matter within the earth.
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It should be observed that in case the earth he not solid to the

centre, the quantities A, C must be taken to mean what would he

the moments of inertia if the several particles of which the earth

is composed were rigidly connected.

12. In the preceding article the surface has been supposed

spheroidal. In the general case of an arbitrary form we should

have to compare the expressions for V given by (10) and (19). In
the first place it may be observed that the term u

x
can always

be got rid of by taking for origin the centre of gravity of the

volume. Equations (20) shew that in the general case, as well

as in the particular case considered in the last article, the

centre of gravity of the mass coincides with the centre of gravity

of the volume.

Now suppress the term u
x

in u, and let u=u, + u"
f
where

it' = (i. _ cos
2
8). Then u may bo expanded in a series of

Laplace’s functions u\ + u\ -I- ... ;
and since T

0 = E3
equation (10)

will be reduced to

V <23 >-

If the mass were collected at the centre of gravity, the second

member of this equation would be reduced to its first term, which

requires that — 0, u 3— 0, &c. Hence (8) would be reduced to

r = a (1 + u') y
and therefore au" is the alteration of the surface

due to the centrifugal force, and av! the alteration due to the

difference between the actual attraction and the attraction of

a sphere composed of spherical strata. Consider at present only

the term u
2
of u'. From the general form of Laplace’s functions

it follows that au'
2
is the excess of the radius vector of an ellipsoid

not much differing from a sphere over that of a sphere having

a radius equal to the mean radius of the ellipsoid. If we take

the principal axes of this ellipsoid for the axes of co-ordinates,

we shall have

u'
2
= €'(£ — sin

2 6 cos
2

<f>)
4- e" (£

— sin
2
8 sin

2

<f>)
-f e"

(J — cos
2
6)

,

e', e", e" being three arbitrary constants, and 6, <fi
denoting angles

related to the new axes of x, y, z in the same way that the

angles before denoted by 6
, <fi

were related to the old axes.

Substituting the preceding expression for u\ in (25), and com-

paring the result with (19), we shall again obtain equations (22).

S. II. 10
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Consequently the principal axes of the mass passing through

the centre of gravity coincide with the principal axes of the ellip-

soid. It will be found that the three equations which replace (23)

are equivalent to but two, which are

A - yEa? = B - y'Ea* = G- y"Ea\
where A

,
B, G denote the principal moments.

The permanence of the earth’s axis of rotation shews however

that one of the principal axes of the ellipsoid coincides, at least

very nearly, with the axis of rotation
;
although, strictly speaking,

this conclusion cannot be drawn without further consideration

except on the supposition that the earth is solid to the centre. If

we assume this coincidence, the term e" — cos
2
9) will unite

with the term u" due to the centrifugal force. Thus the most

general value of u is that which belongs to an ellipsoid having

one of its principal axes coincident with the axis of rotation, added

to a quantity which, if expanded in a series of Laplace’s functions,

would furnish no terms of the order 0, 1, or 2.

It appears from this and the preceding article that the coin-

dence of the centres of gravity of the mass and volume, and that of

the axis of rotation and one of the principal axes of the ellipsoid

whose equation is r = a (1 -f u2),
which was established by Laplace

on the supposition that the earth consists of nearly spherical strata

of equal density, holds good whatever be the distribution of matter

in the interior.

13. Hitherto the surface of the earth has been regarded as a
surface of equilibrium. This we know is not strictly true, on ac-

count of the elevation of the land above the level of the sea. The
question now arises, By what imaginary alteration shall we reduce

the surface to one of equilibrium ?

Now with respect to the greater portion of the earth's surface,

which is covered with water, we have a surface of equilibrium

ready formed. The expression level of the sea has a perfectly de-

finite meaning as applied to a place in the middle of a continent,

if it be defined to mean the level at which the sea-water would
stand if introduced by a canal. The surface of the sea, supposed
to be prolonged in the manner just considered, forms indeed a
surface of equilibrium, but the preceding investigation does not
apply directly to this surface, inasmuch as a portion of the at-
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tracting matter lies outside it. Conceive however the land which

lies above the level of the sea to be depressed till it gets below it,

or, which is the same, conceive the land cut off at the level of the

sea produced, and suppose the density of the earth or rock which

lies immediately below the sea-level to be increased, till the

increase of mass immediately below each superficial element is

equal to the mass which has been removed from above it. The

whole of the attracting matter will thus be brought inside the

original sea-level
;
and it is easy to see that the attraction at

a point of space external to the earth, even though it be close

to the surface, will not be sensibly affected. Neither will the

sea-level be sensibly changed, even in the middle of a continent.

For, suppose the sea-water introduced by a pipe, and conceive the

land lying above the sea-level condensed into an infinitely thin

layer coinciding with the sea-level. The attraction of an infinite

plane on an external particle does not depend on the distance of

the particle from the plane
;
and if a line be drawn through the

particle inclined at an angle a to the perpendicular let fall on the

plane, and be then made to revolve around the perpendicular, the

resultant attraction of the portion of the plane contained within

the cone thus formed will be to that of the whole plane as versin a

to 1. Hence the attraction of a piece of table-land on a particle

close to it will be sensibly the same as that of a solid of equal

thickness and density comprised between two parallel infinite

planes, and that, even though the lateral extent of the table-land

be inconsiderable, only equal, suppose, to a small multiple of the

length of a perpendicular let fall from the attracted particle on the

further bounding plane. Hence the attraction of the land on the

water in the tube will not be sensibly altered by the condensation

we have supposed, and therefore we are fully justified in regarding

the level of the sea as unchanged.

The surface of equilibrium which by the imaginary displace-

ment of matter just considered has also become the bounding

surface, is that surface which at the same time coincides with

the surface of the actual sea, where the earth is covered by water,

and belongs to the system of surfaces of equilibrium which lie

wholly outside the earth. To reduce observed gravity to what

would have been observed just above this imaginary surface, wo

must evidently increase it in the inverse ratio of the square of

the distance from the centre of the earth, without taking ac-

10—2
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count of the attraction of the table-land which lies between the

level of the station and the level of the sea. The question now

arises, How shall we best determine the numerical value of the

earth’s ellipticity, and how best compare the form which results

from observation with the spheroid which results from theory on

the hypothesis of original fluidity ?

14. Before we consider how the numerical value of the earth’s

ellipticity is to be determined, it is absolutely necessary that we

define what we mean by ellipticity
;

for, when the irregularities of

the surface are taken into account, the term must be to a certain

extent conventional.

Now the attraction of the earth on an external body, such as

the moon, is determined by the function V
9
which is given by (10).

In this equation, the term containing r”
2
will disappear if r he

measured from the centre of gravity
;
the term containing r“

4
,
and

the succeeding terms, will be insensible in the case of the moon, or

a more . distant body. The only terms, therefore, after the first,

which need be considered, are those which contain r~
B

. Now the

most general value of u
2
contains five terms, multiplied by as many

arbitrary constants, and of these terms one is ^ — cos
2
#, and the

others contain as a factor the sine or cosine of <£> or of 2$. The

terms containing sin (j> or cos </> will disappear for the reason men-

tioned in Art. 12; but even if they did not disappear their effect

would be wholly insensible, inasmuch as the corresponding forces

go through their period in a day, a lunar day if the moon be the

body considered. These terms therefore, even if they existed, need

not be considered
;
and for the same reason the terms containing

sin 2<j> or cos 2<£ may be neglected
;

so that nothing remains but a

term which unites with the last term in equation (10). Let ebe
the coefficient of the term ^

— cos
2
6 in the expansion of u : then €

is the constant which determines the effect of the earth’s oblate-

ness on the motion of the moon, and which enters into the expres-

sion for the moment of the attractions of the sun and moon on the

earth
;
and in the particular case in which the earth’s surface is an

oblate spheroid, having its axis coincident with the axis of rotation,

e is tke ellipticity. Hence the constant e seems of sufficient

dignity to deserve a name, and it may be called in any case the

ellipticity.

Let r be the radius vector of the earth’s surface, regarded as
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coincident with the level of the sea; and take for shortnoBB

UX {/(#, <f>)}
to denote the mean value of the function f

throughout all angular space, or

4
“ Jo" Jo

2" f(0> $) sin 8d6d$.

Then it follows from the theory of Laplace’s functions that

e = itt {(|
- sin

2
1) r] (20)

,

l being the latitude, or the complement of 9. To obtain trliin

equation it is sufficient to multiply both sides of (8) by 1f4errr x
— cos

2

6) sin 9ddd<fi, and to integrate from 9 = 0 to 9=rrr? and
from (f>=0 to <p = Ztt. Since

-J
— cos

2
9 is a Laplace’s function ot

the second order, none of the terms at the second side of (8) will

furnish any result except u
2 ,
and even in the case of w

2
the toriixh

involving the sine or cosine of <£ or of 2 cj> will disappear.

15. Let g he gravity reduced to the level of the sea by tstki rifJJ

account only of the height of the station. Then this is fclxu

quantity to which equation (12) is applicable; and putting' for
its value we get by means of the properties of Laplace’s funcfiox&&

G = m(g), G (f m - e) = - til {(*
- sin

2
l)g] (27)*

If we were possessed of the values of g at an immense rtxxmljor
of stations scattered over the surface of the whole earth, we rariglif

by combining the results of observation in the manner inclica/fucl

by equations (27) obtain the numerical values of G and e. Wo
cannot, however, obtain by observation the values of g tbt tlici

surface of the sea, and the stations on land where the observantohm
have been made from which the results are to be obtained are not#
very numerous. We must consider therefore in what way thii
variations of gravity due to merely local causes are to be goixxdLtl of,
when we know the causes of disturbance; for otherwise au local
irregularity, which would be lost in the mean of an immemo
number of observations, would acquire undue importance in tdho
result.

16. Now the most obvious cause of irregularity consists ixt flit*

attraction of the land lying between the level of the station and
level of the sea. This attraction would render the values of ^
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sensibly different, which would he obtained at two stations only a

mile or two apart, but situated at different elevations. To render

our observations comparable with one another, it seems best to

correct for the attraction of the land which lies underneath the

pendulum
;
but then we must consider whether the habitual

neglect of this attraction may not affect the mean values from

which G and e are to be found.

Let g=:gx +g\ where g is the attraction just mentioned, so

that gx
is the result obtained by reducing the observed value of

gravity to the level of the sea by means of Dr Young’s formula*.

Let h be the height of the station above the level of the sea, a the

superficial density of the earth where not covered by water; then

by the formula for the attraction of an infinite plane we have

g = To make an observation, conceived to be taken at the

surface of the sea, comparable with one taken on land, the correc-

tion for local attraction would be additive, instead of subtractive *,

we should have in fact to add the excess of the attraction of a

layer of earth or rock, of a thickness equal to the depth of the sea

at that place, over the attraction of so much water. The formula

(J = %rah will evidently apply to the surface of the sea, provided

we regard h as a negative quantity, equal to the depth of the sea,

and replace a by cr — 1, the density of water being taken for the

unit of density • or we may retain a as the coefficient, and diminish

the depth in the ratio of a to cr — 1.

Let p be the mean density of the earth, then

/ o in ^ttctA n Sail
g s= Snak = G T = G r.— .J

§7rpa 2pa

If wo suppose cr=2|, p = 5J, a = 4000 miles, and suppose h

expressed in miles, with the understanding that in the case of the

sea h is a negative quantity equal to fths of the actual depth, we

have g =* *00017 Gh nearly.

# Phil. Tram, for 18!!). Dr Young’s formula is based on the principle of taking

Into account the attraction of the table-land existing between the station and the

level of the sea, in reducing the observation to tho sea level. On account of this

attraction, the multiplier 2hja which gives the correction for elevation alone must

be reduced in the ratio of 1 to l-B<r/4/>, or 1 to *G6 nearly, if cr Mr
Airy, observing that the value ir= is a little too small, and a little too

great, has employed the factor *G, instead of 'GO.
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msider first the value of 6r. We have by the preceding

d the first of equations (27),

G = m (g t)
+ Gx *00017 m (h).

.ng to Professor Rigaud’s determination, the quantity of

3 surface of the earth is to that of water as 100 to 276*.

30se the mean elevation of the land £fch of a mile, and

lepth of the sea 3§ miles, we shall have

/ 7 x_ f x3$ x 276 -£x 100W ~
376

= — 1*49 nearly;

e value of G determined by g1
would be too great by

253 of the whole. Hence the mass of the earth deter-

bhe pendulum would be too great by about the one four-

i of the whole; and therefore the mass of the moon,

>y subtracting from the sum of the masses of tho earth

as determined by means of the coefficient of lunar

he mass of the earth alone, as determined by means of

lum, would be too small by about the one four-thousandth

ss of the earth, or about the one fiftieth of the whole.

Consider next the value of e. Let e
x
be the value which

determined by substituting gx
for g in (27), and let

*£ m -W] =%
.ering the value of q we may attend only to the land,

wc transfer the defect of density of the sea with an

sign to the land, because if g' were constant, q would

This of course proceeds on the supposition that the depth

>a is constant. Since e = e
x — q, if q were positive, the

r determined by the pendulum would appear too great in

nee of the omission of the force g'. I have made a sort of

:egration by means of a map of the world, by counting the

©rals of land bounded each by two meridians distant 10°,

wo parallels of latitude distant 10°, estimating the fraction

con quadrilateral which was partly occupied by sea. The

of quadrilaterals of land between two consecutive parallels,

ample 50° and 60°, was multiplied by 12
(-J-
— sin

2
?) cos l, or

}- cos l, where for l was taken the mean latitude, (55° in the

,) the sum of the results was taken for the whole surface,

* Cambridge Philosophical Transactions, Vol. vi. p. 297.
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and multiplied by the proper coefficient. -The north pole was

supposed to be surrounded by water, and the south pole by land,

as far as latitude 80°. It appeared that the land lying beyond the

parallels for which sin
2
1 = a, that is, beyond the parallels 35° N. and

35° S. nearly, was almost exactly neutralized by that which lay

within those parallels. On the whole, q appeared to have a very

small positive value, which on the same suppositions as before

respecting the height of the land and the depth of the sea, was

*0000012. It appears, therefore, that the omission of the force g
will produce no sensible increase in the value of e, unless the land

be on the whole higher, or the sea shallower, in high latitudes

than in low. If the land had been collected in a great circular

continent around one pole, the value of q would have been *000268
;

if it had been collected in a belt about the equator, we should

have had q
— — *000362. The difference between these values of

q is about one fifth of the whole ellipticity.

19. The attraction g' is not the only irregularity in the mag-

nitude of the force of gravity which arises from the irregularity in

the distribution of land and sea, and in the height of the land and

depth of the sea, although it is the only irregularity, arising from

that cause, which is liable to vary suddenly from one point at the

surface to another not far off. The irregular coating of the earth

will produce an irregular attraction besides that produced by the

part of this coating which lies under and in the immediate neigh-

bourhood of the station considered, and it will moreover cause an

irregular elevation or depression in the level of the sea, and

thereby cause a diminution or increase in the value ofgr

Consider the attraction arising from the land which lies above

the level of the sea, and from the defect of attracting matter in the

sea. Call this excess or defect of matter the coating of the earth :

conceive the coating condensed into a surface coinciding with the

level of the sea, and let J.8 be the mass contained in a small

elements of this surface. Then 8 = ah in the case of the land,

and 8 = — ((7—1) h in the case of the sea, h being in that case the

depth of the sea. Let V
0
be the potential of the coating, V\ V"

the values of Vc outside and inside the surface respectively. Con-

ceive S expanded in a series of Laplace's functions 8
0 -f -f . . then

it is easily proved that
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F" =wgs
0 +^S1+ ...)

j

'the distance of the point considered from the centre.
* I Vi ations give

dV'_
,

i + 1 (a\<+* 1

d?’ 4* 1 \rj

dV"
. v—s— = 4ttS

2i + 1 W
two points, one external, and the other internal,

along the same radius vector very close to the surface.
* >0 an element of this surface lying around the radius vector,

“incmt which for clear ideas we may suppose to be a small

radius s
,
and let s he at the same time infinitely small

ire <~l with a,
and infinitely great compared with the distance

tvtx the points. Then the limiting values of dV'/dr and
Jr will differ by the attraction of the elementE

}
an attraction

i, as follows from what was observed in Art. 13, will be nlti-

Lv tlie same as that of an infinite plane of the same density,

?r8 **
m The mean of the values of dV'/dr and dV"/dr will

the attraction of the general coating in the direction of

ml ins vector, the general coating being understood to mean
whole coating, with the exception of a superficial element

: ucljacent to the points where the attraction is considered,

iting* this mean by dVJdr, we get, on putting r = a,

*
dr 2i+

1

Hi is equation becomes by virtue of either of the equations (28)

dV V
w-f: <30) >

Tills result readily follows from equations (29), which give, on putting r=a,

dr dr

difference of attraction at points infinitely close can evidently only arise from

ilira#otion of the interposed element of surface, which, being ultimately piano,

net, carnally at both points ; and, therefore, the attraction will be in each case

unci "will aet outwards in the first case, and inwards in the second.
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which, is a known equation. Let either member of this equation

be denoted by — g". Then gravity will be increased by g", in

consequence of the attraction of the general coating.

20. But besides its direct effect, the attraction of the coating

will produce an indirect effect by altering the sea-level. Since the

potential at any place is increased by V
c
in consequence of the

coating, in passing from what would be a surface of equilibrium if

the coating were removed, to the actual surface of equilibrium

corresponding to the same parameter, {that is, the same value of

the constant c in equation (1),} we must ascend till the labouring

force expended in raising a unit of mass is equal to V
0)
that is, we

must ascend through a space VJg,
or VJG nearly. In consequence

of this ascent, gravity will be diminished by the quantity corre-

sponding to the height VJG,
or Hi suppose. If we take account

only of the alteration of the distance from the centre of the earth,

this diminution will be equal to G . 2A'/a, or 2 VJa,
or 4g", and

therefore the combined direct and indirect effects of the general

coating will be to diminish gravity by 3g".

But the attraction of that portion of the stratum whose thick-

ness is ti
}
which lies, immediately about the station considered,

will be a quantity which involves H as a factor, and to include this

attraction we must correct for the change of distance K by Dr
Young's rule, instead of correcting merely according to the square

of the distance. In this way we shall get for the diminution of

gravity due to the general coating, not 3g'
r

,
but only 4 (1 — 3<r/4p)

g" — g", or kg" suppose. If a : p :: 5 : 11, we have & = 16'4

nearly.

If we cared to leave the mean value of gravity unaltered, we
should have to use, instead of S, its excess over its mean value $

0
.

In considering however, only the variation of gravity from one place

to another, this is a point of no consequence.

21* In order to estimate the magnitude which the quantity

3g" is likely to attain, conceive two stations, of which the first is

surrounded by land, and the second by sea, to the distance of 1000
miles, the distribution of land and sea beyond that distance being

on the average the same at the two stations. Then, by hypothesis,

the potential due to the land and sea at a distance greater than
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1000 miles is the same at the two stations; and as we only care
for the difference between the values of the potential of the earth’s

coating at the two stations, we may transfer the potential due to

the defect of density at the second station with an opposite sign

to the first station. We shall thus have around the first station,

taking li for the depth of the sea around the second station,

B = ah + {a-l)li. In finding the difference V of the potentials

of the coating, it will he amply sufficient to regard the attracting

matter as spread over a plane disk, with a radius s equal to 1000
miles. On this supposition we get

V

—

. ^rrBsds = 27tBs.

Now G — § Trpa, and therefore

„ 3 V" 9& n 9 ah 4- (c — 1) hi s ~
*(J = 2^

= 4p^ =
4- ^ ’a

0'

Making the same suppositions as before with regard to the

numerical values of cr, pji, h', and a
,
we get 3g"= *000147 G. This

corresponds to a difference of 6 35 vibrations a day in a seconds’

pendulum. Now a circle with a radius of 1000 miles looks but

small on a map of the world, so that we may readily conceive that

the difference depending on this cause between the number of

vibrations observed at two stations might amount to 15 or 20, that

is 7*5 or 10 on each side of the mean, or even more if the height

of the land or the depth of the sea be under-estimated. This

difference will however be much reduced by using kg" in place of

8/*

22. The value of Ve at any station is expressed by a double

integral, which is known if 8 be known, and which may be cal-

culated numerically with sufficient accuracy by dividing the

surface into small portions and performing a summation. Theo-

retically speaking, Vc could be expressed for the whole surface

at once by means of a series of Laplace’s functions; the constants

in this series could be determined by integration, or at least the

approximate integration obtained by summation, and then the

value of V0
could be obtained by substituting in the series the

# The effect of the irregularity of the earth’s surface is greater than what is

represented by kg", for a reason which will be explained further on (Art. 25).
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latitude and longitude of tlie given station for the general latitude

and longitude. But the number of terms which would have to be

retained in order to represent with tolerable accuracy the actual

state of the earth’s surface would be so great that the .method, I

apprehend, would be practically useless; although the leading

terms of the series would represent the effect of the actual

distribution of land and sea in its broad features. It seems

better to form directly the expression for V
c
at any station. This

expression may be calculated numerically for each station by

•using the value of 8 most likely to be correct, if the result be

thought worth the trouble
;

but even if it be not calculated

numerically, it will enable us to form a good estimate of the

variation of the quantity 3
g"

or kg" from one place to another.

Let the surface be referred to polar co-ordinates originating at

the centre, and let the angles yjr, x be with reference to the station

considered what (9, cj> were with reference to the north pole. The

mass of a superficial element is equal to 8a
2

sin ^d^dx, an(l

distance from the station is 2a sin Hence we have

V
0= a J/S cos^ d^dx (31)

Let 8m be the mean value of 8 throughout a circle with an

angular radius ^ then the part of V
0
which is due to an annulus

having a given infinitely small angular breadth dyjr is proportional

to cos or to Sm nearly when is not large. If we regard

the depth of the sea as uniform, we may suppose 8 = 0 for the

sea, and transfer the defect of density of the sea with an opposite

sign to the land. We have seen that if we set a circle of land

^ mile high of 1000 miles radius surrounding one station against

a circle of sea 3| miles deep, and of the same radius, surround-

ing another, we get a difference of about ^ x 1*64 x 6*35, or 3J
nearly, in the number of vibrations performed in one day by a

seconds’ pendulum. It is hardly necessary to remark that high

table-land will produce considerably more effect than land only

just raised above the level of the sea, but it should be observed

that the principal part of the correction is due to the depth of the

sea. Thus it would require a uniform elevation of about 2*1

miles, in order that the land elevated above the level of the sea

should produce as much effect as is produced by the difference

between a stratum of land miles thick and an equal stratum of

water.
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23. These considerations seem sufficient to account, at least in

a great measure, for the apparent anomalies which Mr Airy has

noticed in his discussion of pendulum experiments*. The first

table at p. 230 contains a comparison between the observations

which Mr Airy considers first-rate and theory. The column

headed “Error in Vibrations” gives the number of vibrations

per diem in a seconds' pendulum corresponding to the excess of

observed gravity over calculated gravity. With respect to the

errors Mr Airy expressly remarks “ upon scrutinizing the errors of

the first-rate observations, it would seem that, cceteris paribus,

gravity is greater on islands than on continents.” This circum-

stance appears to be fully accounted for by the preceding theory.

The greatest positive errors appear to belong to oceanic stations,

which is just what might be expected. Thus the only errors with

the sign + which amount to 5 are, Isle of France -1- 7*0; Marian

Islands + 6*8
;
Sandwich Islands + 5

'2 ;
Pulo Gaunsah Lout (a

small island near New Guinea and almost on the equator), 4* 5*0.

The largest negative errors are, California — 6*0
;
Maranham

— 5*6
;

Trinidad — 5*2. These stations are to be regarded as

continental, because generally speaking the stations which are

the most continental in character are but on the coasts of conti-

nents, and Trinidad may be regarded • as a coast station. That

the negative errors just quoted are larger than those that stand

opposite to more truly continental stations such as Clermont,

Milan, &c. is no objection, because the errors in such different

latitudes cannot be compared except on the supposition that the

value of the ellipticity used in the comparison is correct.

Now if we divide the 4?9 stations compared into two groups,

an equatorial group containing the stations lying between latitudes

35° N. and 35° S., and a polar group containing the rest, it will

be found that most if not all of the oceanic stations are contained

in the former group, while the stations belonging to the latter

are of a more continental character. Hence the observations will

make gravity appear too great about the equator and too small

towards the poles, that is, they will on the whole make gravity

vary too little from the equator to the poles
;

and since the

variation depends upon fro-e, the observations will be best

satisfied by a value of e which is too great. This is in fact pro-

Encyclopedia Metropolitana, Art. Figure of the Earth.
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cisely the result of the discussion, the value of e which Mr Airy

has obtained from the pendulum experiments (*003535) being

greater than that which resulted from the discussion of geodetic

measures (*003352), or than any of the values (*003370, *003360,

and *003407), obtained from the two lunar inequalities which

depend upon the earth's oblateness.

Mr Airy has remarked that in the high north latitudes the

greater number of errors have the sign + ,
and that those about

the latitude 45° have the sign —
;
those about the equator being

nearly balanced. To destroy the errors in high and mean latitudes

without altering the others, he has proposed to add a term

—A sin
2\ cos

2
A, where A is the latitude. But a consideration ofthe

character of the stations seems sufficient, with the aid of the

previous theory, to account for the apparent anomaly. About

latitude 45° the stations are all continental; in fact, ten con-

secutive stations including this latitude are Paris, Clermont, Milan,

Padua, Fiume, Bordeaux, Figeac, Toulon, Barcelona, New York.

These stations ought
,
as a group, to appear with considerable nega-

tive errors. Mr Airy remarks “ If we increased the multiplier of

sin
2
X,” and consequent!}7 diminished the ellipticity, “ we might

make the errors at high latitudes as nearly balanced as those at

the equator : but then those about latitude 45° would be still

greater than at present/'

The largeness of the ellipticity used in the comparison accounts

for the circumstance that the stations California, Maranham,

Trinidad, appear with larger negative errors than any of the

stations about latitude 45°, although some of the latter appear

more truly continental than the former. On the whole it would

seem that the best value of the ellipticity is one which, supposing

it left the errors in high latitudes nearly balanced, would give a

decided preponderance to the negative errors about latitude 45° N.

and a certain preponderance to the positive errors about the

equator, on account of the number of oceanic stations which occur

in low latitudes.

If we follow a chain of stations from the sea inland, or from the

interior to the coast, it is remarkable how the errors decrease

algebraically from the sea inwards. The chain should not extend

over too large a portion ofthe earth’s surface, as otherwise a small

error in the assumed ellipticity might effect the result. Thus for

exar.
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, Spitzbergen + 4 *

3,
Hammerfest — 0*4, Drontheim — 2*7.

'aring Hammerfest with Drontheim, we may regard the

as situated at the vertex of a slightly obtuse angle, and
;er as situated at the edge of a straight coast. Again,

c — 0*1, Paris — 1
*

9
,
Clermont — 3

*

9
,
Figeac — 3

*8
,
Toulon

Jarcelona 0*0, Fomentera -f 0*2. Again, Padua + 0*7, Milan

Again, Jamaica — 0*8, Trinidad — 5*2.

Conceive the correction kg" calculated, and suppose it

.
as well as the correction —g, to observed gravity reduced

evel of the sea, or to g, and let the result be g Let e
;/
bo

pticity which would be determined by means of g)P €/y-h Ae/;

ue ellipticity. Since g y/ = g — g + kg" ,
and therefore

-O' — we get by (27)

Ae, =||m{a-sm?l) (g' -leg")} (32).

' = Qrrrcrh — %t8 = 27
;
and we get from (30) and (28)

8,

2i + 1
*

i terms will disappear from the second side of (32) except

we therefore get

A f?

Ae
// = 4^ m {(i

- sin2 1
) (1

- $) 2ttSJ.

the correction Ae
y/

is less than that considered in Art. 18, in

do of 5 — k to 5, and is therefore probably insensible on ac-

of the actual distribution of land and water at the surface of

rth.

. Conceive the islands and continents cut off at the level of

a, and the water of the sea replaced by matter having tho

density as the land. Suppose gravity to be observed at the

e which would be thus formed, and to be reduced by Dr
rule to the level of what would in the altered state of the

be a surface of equilibrium. It is evident that gn expresses

*avity which would be thus obtained.

io irregularities of the earth’s coating would still not be

y allowed for, because the surface which would be formed

manner just explained would no longer be a surface of equi-
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librium, in consequence of the fresh distribution of attracting

matter. The surface would thus preserve traces of its original

irregularity. A repetition of the same process would give a surface

still more regular, and so on indefinitely. It is easy to see the

general nature of the correction which still remains. Where a

small island was cut off, there was previously no material elevation

of the sea-level, and therefore the surface obtained by cutting off

the island will be very nearly a surface of equilibrium, except in so

far as that may be prevented by alterations which take place on a

large scale. But where a continent is cut off there was a consider-

able elevation in the sea-level, and therefore the surface which is

left will be materially raised above the surface of equilibrium which

most nearly represents the earth’s surface in its altered state.

Hence the general effect of the additional correction will be to in-

crease that part of g" which is due to causes which act on a larger

scale, and to leave nearly unaffected that part which is due to

causes which are more local.

The form of the surface of equilibrium which would be finally

obtained depends on the new distribution of matter, and conversely,

the necessary distribution of matter depends on the form of the

final surface. The determination of this surface is however easy

by means of Laplace’s analysis.

26. Conceive the sea replaced by solid matter, of density cr,

having a height from the bottom upwards which is to the depth

of the sea as 1 to cr. Let h be the height of the land above

the actual sea-level, h being negative in the case of the sea,

and equal to the depth of the sea multiplied by 1 — 1/cr. Let

x he the unknown thickness of the stratum which must be re-

moved in order to leave the surface a surface of equilibrium,

and suppose the mean value of x to be zero, so that on the whole

matter is neither added nor taken away. The surface of equili-

brium which would he thus obtained is evidently the same as

that which would he formed if the elevated portions of the irre-

gular surface were to become fluid and to run down*

Let V be the potential of the whole mass in its first state,

Vx the potential of the stratum removed. The removal of this

stratum will depress the surface of equilibrium by the space

and the condition to be satisfied is, that this new
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surface of equilibrium, or else a surface of equilibrium belong-

ing to the same system, and therefore derived from the former

by further diminishing the radius vector by the small quantity

o', shall coincide with the actual surface. We must therefore

have
G~x Vx + c = x — h (33).

Let h and x be expanded in series of Laplace’s functions

K + + • • • and Then the value of Vx at the sur-

face will be obtained from either of equations (28) by replacing 8

by ax and putting r — a. We have therefore

Vx = 47TO-CJ (>0 -H*1 + jK + ---) (34)-

After substituting in (33) the preceding expressions for Vx ,
h,

and x, we must equate to zero Laplace's functions of the same

order. The condition that x
0 = 0 may be satisfied by means of the

constant c ,
and we shall have

G~\ ^Trcra — xi~ h
i>

which gives, on replacing 0 \ 4>ncm by its equivalent 3crfp,

x . = (2j±})_P
j1

(2i
Jr 1) p — 3<7

1 +
3(7

(2* 4- 1) p — 3a h (35).

We see that for terms of a high order xt is very nearly equal

to hi, but for terms of a low order, whereby the distribution of land

and sea would be expressed as to its broad features, x{ is sensibly

greater than A*.

27. Let it be required to reduce gravity g to the gravity

which would be observed, in the altered state of the surface,

along what would then be a surface of equilibrium. Let the cor-

rection be denoted by g — 3g”, where g' is the same as before. The
correction due to the alteration of the coating in the manner con-

sidered in Art. 20 has been shewn to be equal to

27i-3 — 67r2 ’

and the required correction will evidently be obtained by replacing

8 by ax. Putting for x
{ its value got from (35) we have

*' - 3*"'=
r”-3.

h‘ - hi.

11S. II.
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which gives, since 27r<T%hi = 27rah = g and G = ^Trpu,

3p — §<r lu3g"'=G^X
(
36).

2p (2^4- 1) p — 3a a

If we put <r = 2J, p=5J, a = 4000, and suppose h expressed

in miles, we get

39" a SWo S 1K-S
= s » WOW x

(— 4.5A
0 4* h

t
4* .45A

2
4* .290A

S
4* .214&4 4- ...)..**.. (37)*

Had we treated the approximate correction 3g" in the same

manner we should have had
3A* = Gx .00017

x

(3*0 + h
l + 4* .429h

2
4" .33 3//

4 41

• • •)

whereas, since k = 3 (1 — <r/p), we get

= <? S%~ 3-f^=gx.00017 x
2pa {2,i + l) p

(1.686*0 4- .545/q 4- .327A
4
4- .234*, 4- .182/q 4- ...) (38).

The general expressions for 3g"'y 3g", and kg" shew that the

approximate correction kg" agrees with the true correction 3g'"

so far as regards terms of a high order, whereas the leading terms,

beginning with the first variable term, are decidedly too small

;

so that, as far as regards these terms, 3g
n/

is better represented

by 3g" than by kg". This agrees with what has been already

remarked in Art. 25.

If we put g — <f
4-3gr'"=g//fi

and suppose G and e determined

by means of g/u> small corrections similar to those already investi-

gated will have to be applied in consequence of the omission of the

quantity g — 3g"
f

in the value of g. The correction to e would

probably be insensible for the reason mentioned in Art. 18. If

we are considering only the variation of gravity, we may of

course leave out the term h
0

.

The series (37) would probably be too slowly convergent to be
of much use. A more convergent series may be obtained by sub-

tracting kg" from 3g"
r

,
since the terms of a high order in 3g"

r

arc

ultimately equal to those in kg". We thus get

3f'=kg"+ G x .00017 x

(- 6.136*
#
-+-.455A^ .... (30),
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which, gives g" if g" be known by quadratures for the station

considered.

Although for facility of calculation it has been supposed that

the sea was first replaced by a stratum of rock or earth of less

thickness, and then that the elevated portions of the earth’s

surface became fluid and ran down, it may be readily seen that it

would come to the same thing if we supposed the water to remain

as it is, and the land to become fluid and run down, so as to form

for the bottom of the sea a surface of equilibrium. The gravity

gJU would apply to the earth so altered.

28. Let us return to the quantity Ve of Art. 19, and consider

how the attraction of the earth’s irregular coating affects the

direction of the vertical. Let l be the latitude of the station,

which for the sake of clear ideas may be supposed to be situated

in the northern hemisphere, w its longitude west of a given place,

f the displacement of the zenith towards the south produced by

the attraction of the coating, 7) its displacement towards the east.

Then
1 dVr sec ldVr

Ga di
7
) = Ga dzr

because a~
l dVc/dl and sec l . ar

x

dVJd'ur are the horizontal compo-

nents of the attraction towards the north and towards the west

respectively, and G may be put for g on account of the smallness

of the displacements.

Suppose the angle x of Art. 22 measured from the meridian,

so as to represent the north azimuth of the elementary mass

Ba2
sin '^rdyfrdx- On passing to a place on the same meridian

whose latitude is l + dl, the angular distance of the elementary

mass is shortened by cos x . dl,
and therefore its linear distance,

which was a chord yfr, or 2a sin |^, becomes

2a sin $yfr — a cos cos x . dl.

Hence the reciprocal of the linear distance is increased by

l/4a . cos cosec
2^ cos % . dl

,

and therefore the part of Ve due to this element is increased by

|S<2 cos
2

cosec cos % . d^dxdl

Hence we have

dVc _ a rr cos’

Ifl "2
: jj

‘ $yfr COS X
sin i'lfr

Bdfdx (40).
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Although the quantity under the integral sign in this expres-

sion becomes infinite when vanishes, the integral itself has a

finite value, at least if we suppose S to vary continuously in the

immediate neighbourhood of the station. For if 8 becomes S'

when x becomes x + 7r
>
we may replace 8 under the integral sign

by S— S', and integrate from % = 0 to % = tt, instead of inte-

grating from % = 0 to % = 2*7t, and the limiting value of

(S — S') / sin when yfr vanishes is 4cZS/d>|r, which is finite.

To get the easterly displacement of the zenith, we have only to

measure % from the west instead of from the north, or, which

comes to the same, to write % + \ir for x> an(l continue to measure

X from the north. We get

sec £ ff cos
2

cosec sin x • Sd^dx . . .(41).

29. The expressions (40) and (41) are not to be applied to

points very near the station if S vary abruptly, or even very

rapidly, about such points. Recourse must in such a case be had

to direct triple integration, because it is not allowable to consider

the attracting matter as condensed into a surface. If however 8

vary gradually in the neighbourhood of the station, the expression

(40) or (41) may be used without further change. For if we

modify (40) in the way explained in the preceding article, or else

by putting the integral under the form

Ln
Jo

2n cob2 i

f

00300W 003 x (
s ~ S

i)

where S
t
denotes the value of 8 at the station, we see that the

part of the integral due to a very small area surrounding the

station is very small. If S vary abruptly, in consequence suppose

of the occurrence of a cliff, we may employ the expressions (40),

(41)

,
provided the distance of the cliff from the station be as much

as three or four times its height.

These expressions shew that the vertical is liable to very

irregular deviations depending- on attractions which are quite

local. For it is only in consequence of the opposition of attractions

in opposite quarters that the value of the integral is not con-

siderable, and it is of course larger in proportion as that opposition

is less complete. Since sin is but small even at the distance

of two or three hundred miles, a distant coast, or on the other

hand a distant tract of high land of considerable extent, may
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produce a sensible effect
;
although of course in measuring an arc

of the meridian those attractions may be neglected which arise

from masses which are so distant as to affect both extremities

of the arc in nearly the same way.

If we compare (40) or (41) with the expression for g" or g"',

we shall see that the direction of the vertical is liable to far more

irregular fluctuations on account of the inequalities in the earth’s

coating than the force of gravity, except that part of the force

which has been denoted by g\ and which is easily allowed for.

It has been supposed by some that the force of gravity alters

irregularly along the earth’s surface; and so it does, if we compare

only distant stations. But it has been already remarked with

what apparent regularity gravity when corrected for the inequality

g appears to alter, in the direction in which we should expect, in

passing from one station to another in a chain of neighbouring

stations.

30. There is one case in which the deviation of the vertical

may become unusually large, which seems worthy of special con-

sideration.

For simplicity, suppose 8 to be constant for the land, and equal

to zero for the sea, which comes to regarding the land as of

constant height, the sea as of uniform depth, and transferring

the defect of density of the sea with an opposite sign to the land.

Apply the integral (40) to those parts only of the earth’s surface

which are at no great distance from the station considered, so that

we may put cos = 1, sin = s/2&, if s be the distance

of the element, measured along a great circle. In going from the

station in the direction determined by the angle %, suppose that

we pass from land to sea at distances s
iy $8 , <s

5
,... and from sea

to land at the intermediate distances $
2 , $4 ... On going in the

opposite direction suppose that we pass from land to sea at the

distances s__
8 ,

s_
5 , ... and from sea to land at the distances

s_
2 ,

Then we get from (40),

dV
~jf =

/(log S
1
- log S-l

- G°g - logO + log S
s
- log s_

a

cos x-dx-

If the station be near the coast, one of the terms log^, log s_
t

will be large, and the zenith will be sensibly displaced towards the
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sea by the irregular attraction. On account of the shelving of the

coast, the preceding expression, which has been formed on the

supposition that S vanished suddenly, would give too great a

displacement
;
but the object of this article is not to perform any

precise calculation, but merely to shew how the analysis indicates

a case in which there would be unusual disturbance. A cliff

bounding a tract of table-land would have the same sort of effect

as a coast, and indeed the effect might be greater, on account of

the more sudden variation of S. The effect would be nearly the

same at equal horizontal distances from the edge above and

below, that distance being supposed as great as a small multiple

of the height of the cliff, in order to render the expression (40)

applicable without modification.

31. Let us return now to the force of gravity, and leaving the

consideration of the connexion between the irregularities of gravity

and the irregularities of the earth’s coating, and of the possibility

of destroying the former by making allowance for the latter, let us

take the earth such as we find it, and consider further the con-

nexion between the variations of gravity and the irregularities of

the surface of equilibrium which constitutes the sea-level.

Equation (12) gives the variation of gravity if the form of the

surface be known, and conversely, (8) gives the form of the surface

if the variation of gravity be known. Suppose the variation of

gravity known by means of pendulum-experiments performed at a

great many stations scattered over the surface of the earth
;
and

let it be required from the result of the observations to deduce

the form of the surface. According to what has been already

remarked, a series of Laplace's functions would most likely be

practically useless for this purpose, unless we are content with

merely the leading terms in the expression for the radius vector;

and the leading character of those terms depends, not necessarily

upon their magnitude, but only on the wide extent of the ine-

qualities which they represent. We must endeavour therefore

to reduce the determination of the radius vector to quadratures.

For the sake of having to deal with small terms, let g be

represented, as well as may be, by the formula which applies to an

oblate spheroid, and let the variable term in the radius vector be

calculated by Clairaut’s Theorem. Let gQ
be calculated gravity,
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r
c
the calculated radius vector, and put g = ge+ Ag, r — r

c 4* aAu.

.

Suppose Ag and Au expanded in series of Laplace’s functions.

It follows from (12) that Ag will have no term of the order 1

;

indeed, if this were not the case, it might be shewn that the

mutual forces of attraction of the earth’s particles would have a

resultant. Moreover the constant term in Ag may he got rid of by

using a different value of G. No constant term need be taken in

the expansion of Au, because such a term might be got rid of by

using a different value of a, and a of course cannot be determined

by pendulum-experiments. The term of the first order will dis-

appear if r be measured from the common centre of gravity of

the mass and volume. The remaining terms in the expansion

of Au will be determined from those in the expansion of Ag by

means of equations (8) and (12).

Let Ag=G (v2 + v
8 + v

4 + ...) (42),

and we shall have
Au = v.

2 + %v
8+ %v

4 + (43).

Suppose Ag = QF{9
, </>). Let be the angle between the

directions determined by the angular co-ordinates 6
,

and O', cf>\

Let (1 — 2£*cos^ -f*
£’
2
)^ be denoted by R, and let Qi

be the coef-

ficient of in the expansion of IT1
in a series according to ascend-

ing powers of £ Then

v,=
J

W

J*F(P, f) Q t
sin ffdffdtf,

and therefore if f be supposed to be less than 1, and to become 1

in the limit, we shall have ^irAu — limit of

f £V(0', f)(5£Q,+irQ,... +^yr 1

a,+ ...)sm0W#'...(44).

Now assume

7

=

kq* +m3
. . r* Qi+

and we shall have

^=5Q1 + 7^Qa...+ {2i+l)^Qi +...-,

J^F^d.£i=?Qt + S
i
Q,... + ^ (K~

l - Q'-ZQJ ;

whence we get, putting Z for FT1 — Q0 — £Q t , 7 = 2/f *d . $Z.
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Integrating by parts, and observing that y vanishes with £ we get

y =2r^+3jfr^.

The last integral may be obtained by rationalization. If we

assume M = w — f, and observe that Q0
=1, = cos \}r, and that

w = 1 when f vanishes, we shall find

/fc-^^cosf -log
i

~ C1 + cosf

)

w — 1

w +

1

— 2 cos^.log
?//+

1

When^=l we have^=(2— 2eos^) *—(l+eos^),w=l + 2sin^,
and

- 2 sin (I - sin {yjr) - cos log {sin (1 + sin %f)}.

Putting/ (yfr) for the value of y when £= 1, we have

f(^r) = cosec + 1 — 6 sin £yfr

— 5 cos — 3 cos ^ log (sin-^ (1 + sin JtJt)} (45).

In the expression for Au, we may suppose the line from which
9' is measured to be the radius vector of the station considered.

We thus get, on replacing F (O', </) by G~lAg, and employing the

notation of Art. 22,

=
4

sinf (46).

32. Let Ag =/ + A'g. Then A'g is the excess of observed

gravity reduced to the level of the sea by Dr Youngs rule over

calculated gravity; and of the two parts g and A'g of wind* Ag

consists, the former is liable to vary irregularly and abruptly from

one place to another, the latter varies gradually. Hence, for the

sake of interpolating between the observations taken at different

stations, it will be proper to separate Ag into these two parts, or,

which comes to the same, to separate the whole integral into two

parts, involving g and A'g respectively, so as to get the part of Au

which is due to g by our knowledge of the height of the land and

the depth of the sea, and the part which depends on A'g by the

result of pendulum-experiments. It may be observed that a con-

stant error, or a slowly varying error, in the height of the land

would be of no consequence, because it would enter with opposite

signs into g and A'g.

It appears, then, that the results of pendulum-experiments

furnish sufficient data for the determination of the variable part of
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the radius vector of the earth's surface, and consequently for the

determination of the particular value which is to be employed at

any observatory in correcting for the lunar parallax, subject how-

ever to a constant error depending on an error in the assumed

value of a .

33. The expression for g'
n

in Art. 27 might be reduced to

quadratures by the method of Art., 31, but in this case the inte-

gration with respect to f could not be performed in finite terms, and

it would be necessary in the first instance to tabulate, once for all,

an integral of the form J*f(£ cos yjr) d£ for values of which need

not be numerous, from 0 to nr. This table being made, the tabu-

lated function would take the place of f($) in (46), and the rest

of the process would be of the same degree of difficulty as the

quadratures expressed by the equations (31) and (46).

34. Suppose Au known approximately, either as to its general

features, by means of the leading terms of the series (43), or in

more detail from the formula (46), applied in succession to a great

many points on the earth’s surface. By interpolating between

neighbouring places for which Au has been calculated, find a

number of points where Au has one of the constant values — 2/3,

— /3, 0, /3, 2/3..., mark these points on a map of the world, and join

by a curve those which belong to the same value of Au. We shall

thus have a series of contour lines representing the elevation or

depression of the actual sea-level above or below the surface of

the oblate spheroid, which has been employed as most nearly

representing it. If we suppose these lines traced on a globe, the

reciprocal of the perpendicular distance between two consecutive

contour lines will represent in magnitude, and the perpendicular

itself in direction, the deviation of the vertical from the normal to

the surface of the spheroid, or rather that part of the deviation

which takes place on an extended scale : for sensible deviations

may be produced by attractions which are merely local, and which

would not produce a sensible elevation or depression of the sea-

level
;
although of course, as to the merely mathematical question,

if the contour lines could be drawn sufficiently close and exact,

even local deviations of the vertical would be represented.

Similarly, by joining points at which the quantity denoted in

Art. 19 by V0 has a constant value, contour lines would be formed
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representing the elevation of the actual sea-level above what

would be a surface of equilibrium if the earth’s irregular coating

were removed. By treating Vx in the same way, contour lines

would be formed corresponding to the elevation of the actual

sea-level above what would be the sea-level if the solid portions of

the earth’s crust* which are elevated were to become fluid and to

run down, so as to form a level bottom for the sea, which would in

that case cover the whole earth.

These points of the theory are noticed more for the sake of

the ideas than on account of any application which is likely to be

made of them; for the calculations indicated, though possible with

a sufficient collection of data, would be very laborious, at least if

we wished to get the results with any detail.

35. The squares of the ellipticity, and of quantities of the

same order, have been neglected in the investigation. Mr Airy,

in the Treatise already quoted, has examined the consequence, on

the hypothesis of fluidity, of retaining the square of the ellipticity,

in the two extreme cases of a uniform density, and of a density

infinitely great at the centre and evanescent elsewhere, and has

found the correction to the form of the surface and the variation of

gravity to be insensible, or all but insensible. As the connexion

between the form of the surface and the variation of gravity fol-

lows independently of the hypothesis of fluidity, we may infer that

the terms depending on the square of the ellipticity which would
appear in the equations which express that connexion would be

insensible. It may be worth while, however, just to indicate the

mode of proceeding when the square of the ellipticity is retained.

By the result of the first approximation, equation (1) is satis-

fied at the surface of the earth, as far as regards quantities of the

first order, but not necessarily further, so that the value of F + [T

at the surface is not strictly constant, but only of the form c 4- //,

where H is a small variable quantity of the second order. It is

to be observed that F satisfies equation (3) exactly, not approxi-

mately only. Hence we have merely to add to F a potential F'
which satisfies equation (3) outside the earth, vanishes at an
infinite distance, and is equal to H at the surface. Now if we
suppose F' to have the value H at the surface of a sphere whose
radius is a, instead of the actual surface of the earth, we shall only
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commit an error which is a small quantity of the first order com-
pared with E, and II is itself of the second order, and therefore

the error will be only of the third order. But by this modifica-

tion of one of the conditions which V ' is to satisfy, we are enabled

to find V' just as V was found, and we shall thus have a solution

which is correct to the second order of approximation. A repeti-

tion of the same process would give a solution which would be

correct to the third order, and so on. It need hardly be remarked

that in going beyond the first order of approximation, we must

distinguish in the small terms between the direction of the vertical,

and that of the radius vector.



[From the Report of the British Association for 1849. Part n. p. 10.]

On a Mode of Measuring the Astigmatism of a Defective

Eye.

Besides the common defects of long sight and short sight,

there exists a defect, not very -uncommon, which consists in the

eye’s refracting the rays of light with different power in different

planes, so that the eye, regarded as an optical instrument, is not

symmetrical about its axis. This defect was first noticed by the

present Astronomer Boyal in a paper published about 20 years

ago in the Transactions of the Cambridge Philosophical Society.

It may be detected by making a small pin-hole in a card, which is

to be moved from close to the eye to arm’s length, the eye mean-

while being directed to the sky, or any bright object of sufficient

size. With ordinary eyes the indistinct image of the hole remains

circular at all distances
;
but to an eye having this peculiar defect

it becomes elongated, and, when the card is at a certain distance,

passes into a straight line. On further removing the card, the

image becomes elongated in a perpendicular direction, and finally,

if the eye be not too long-sighted, passes into a straight line

perpendicular to the former. Mr Airy has corrected the defect in

his own case by means of a spherico-cylindrical lens, in which the

required curvature of the cylindrical surface was calculated by

means of the distances of the card from the eye when the two focal

lines were formed. Others however have found a difficulty in

preventing the eye from altering its state of adaptation during the

measurement of the distances. The author has constructed an

instrument for determining the nature of the required lens, which

is based on the following proposition :

—

Conceive a lens ground with two cylindrical surfaces of equal

radius, one concave and the other convex, with their axes crossed
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at right angle
;

cal! snob a burn an fiattymitt iv Inm ; l<*t, tin* mu -

promil of it h fora! length in one of tin* principal planes bo called its

ptm*n\ and a Him* parallel to the ax in of the convex am faro it h

mlhjmntie turm , Then if two thin nxt igmatie lenses hr combined

with flair astigmatic axes inclined at any angle, tiny will hr

equivalent to a thiol astigmatic; lens, determined hy fin* following

construction In a plane perpendicular to tint common uxis of

tbit loners* or axis of vbion, draw through any point two straight

lines, representing in magnitude the powers of the respective;

lenses, and inclined to a fixed lino drawn arbitrarily in a dimo-

tion prrjM’iidindar to the axis of \ i*ioii at Angle# etpmt to twin*

thr inclination# of their astigmatic asea, and complete the

parallelogram. Thru the tw«* hones will hr equivalent hi a. single

astigmatic tens, represented hy thr diagonal of thr parallelogram

in thr same way in which thr single tenses arr represented hy the

aides. A pbuio*ey! bid rural or fephcricn-ryliodric?al Iran its equi-

valent to n common lens, thr power of which is espial to the Menu*

mmi of f hr reciprocal* of tin* fond length# in the two principal

planes, combined with ait astigmatic Jens, thy power of which in

equal to their setiiinlilTerciire,

If two piano cylindrical lenses of equal radius, our concave and

the other convex, hr fixed, <m it in thr ltd and tha other itt tint

body of a small round wooden Im% $
with a hole in thn top and

bottom, m m to I :m m nearly m pn#*ihio in contact, thr limwia

will mutt raligo each otlirt when fin? nx«:m of tint surfaces arc?

pnnilM
;
and, by merely turning tin? lid mind, an astigmatic U*m

limy Ik* formed of it power varying continuously from zt*m to twino

thr astigmatic power of either Inn, When a person who ha# tins

defect itt fpieation linn turned tin* lid till this power suit# Ida eyr,

an extrirtmdy simple numerical calculation, the data for which are

furnished by tint chord of double tin? angle through which this ltd

lifts hmn turned, enables him to eaten lain tins curvature of tins

cylindrical mttfmit of m Imm for a pair of spectacle# which will

correct tint defeet of Ids eye,

[Tint preposition hero employed is easily demonstrated by a

method founded on tins notions of the theory of tt adulations,

though of mmm9 depending m it docs simply tm thr laws of

redaction and refraction, it doe# not involve the adoption of any
jmrikular theory of light.
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Consider a thin lens bounded by cylindrical surfaces, the axes

of the cylinders being crossed at right angles. Refer points in the

neighbourhood of the lens to the rectangular axes of xy yy
z

y
the

axis of z being the axis of the lens, and those of x and y parallel

to the axes of the two cylindrical surfaces respectively, the origin

being in or near the lens, suppose in its middle point. Let r, s,

measured positive when the surfaces are convex, be the radii of

curvature in the planes of xzy
yz respectively. Then if T be the

central thickness of the lens, the thickness near the point (x
y y)

will be

very nearly. As T is constant, and is supposed very small, we may
neglect it, and regard the thickness as negative, and expressed by

the second term in the above formula. The incident pencil being

supposed to be direct, or only slightly oblique, and likewise slender,

the retardation of the ray which passes through the point (x, y)
may be calculated as if it were incident perpendicularly on a

parallel plate of thickness

so that if R be the retardation, measured by equivalent space in

air, and ya be the index of refraction

The effect therefore of our lens, to the lowest order of approxi-

mation, which gives the geometrical foci in the principal planes, is

the same as that of two thin lenses placed in contact, one an
ordinary lens, and the other an astigmatic lens. If r be the radius

of curvature of the piano-spherical lens equivalent to the ordinary

lens, and r" that of the astigmatic lens, we have

as above enunciated. If p be the power of the astigmatic lens,

1 1\



THE ASTIGMATISM OF A DEFECTIVE EYE. 175

and for the retardation produced by this lens alone

- R = \p O2 - y
2

) = \pp
2
cos 2 (9,

where p, 9 are polar co-ordinates in the plane of xy.

If two thin astigmatic lenses of powers p , p ' and with their

astigmatic axes inclined at azimuths a} cl to the axis of y be com-

bined, we shall have for the combination

— jR = \pp
2
cos 2 (0 — a) + ip'p* cos 2 (9 — a ),

which is the same as would be given by a single astigmatic lens of

power px
at an azimuth av provided

pp
2
cos 2(9 — a) +pf

p
2
cos 2 (9 — a) =p

1p
2
cos 2 (9 — aj,

which will be satisfied for all values of 9 provided

p cos 2a +p cos 2a' =jp1
cos 2a

t ,

^ sin 2a 4- p' sin 2a' —p
x
sin 2ar

These two equations geometrically interpreted give the propo-

sition enunciated above for the combination of astigmatic lenses.]



[From the Report of the British Association for 1849. Part ir. p. 11.]

On- the Determination of the Waye Length corresponding

WITH ANY POINT OF THE SPECTRUM.

Mr Stokes said it was well known to all engaged in optical

researches that Fraunhofer had most accurately measured the wave

lengths of seven of the principal fixed lines of the spectrum. Now

he found that by a very simple species of interpolation, which he

described, he could find the wave length for any point intermediate

between the two of them. He then exemplified the accuracy to

be obtained by his method by applying it to the actually known

points, and shewed that in these far larger intervals than he ever

required to apply the method to the error was only in the eighth,

and in one case in the seventh, place of decimals. By introducing

a term depending on the square into the interpolation still greater

accuracy was attainable. The mode of interpolation depended on

the known fact that, if substances of extremely high refractive

power be excepted, the increment A/jl of the refractive index in

passing from one point of the spectrum to another is nearly propor-

tional to the increment AAT
2
of the squared reciprocal of the wave

length. Even in the case of flint glass, the substance usually

employed in the prismatic analysis of light, this law is nearly true

for the whole spectrum, and will be all hut exact if restricted to

the interval between two consecutive fixed lines. Hence we have

only to consider /z as a function, not of A, but of A"
2

,
and then take

proportional parts.

On examining in this way Fraunhofer's indices for flint glass,

it appeared that the wave length BX of the fixed line B was too

great by about 4 in the last, or eighth, place of decimals. It is



ON THE DETERMINATION OF THE WAVE LENGTH, &C. 177

remarkable that tbe line B was not included in Fraunhofer’s

second and more accurate determination of the wave lengths, and

that the proposed correction to BX is about the same, both as to

sign and magnitude, as one would have guessed from Fraunhofer’s

own corrections of the other wave lengths, obtained from his

second series of observations.

[A map of the spectrum laid down according to tbe values of

A~2
instead of X refers equally to a natural standard, that is, one

independent of the material of any prism, and is much more con-

venient for comparison with spectra obtained by dispersion, not

diffraction.]

s. II. 12



[From the Transactions of the Cambridge Philosophical Society, Yol. vm.

p. 707.]

Discussion of a Differential Equation relating, to the
BREAKING OF KAILWAY BRIDGES.

[Bead May 21, 1849.]

To explain the object of the following paper, it will be best to

relate the circumstance which gave rise to it. Some time ago

Professor Willis requested my consideration of a certain differen-

tial equation in which he was interested, at the same time explain-

ing its object, and the mode of obtaining it. The equation will be

found in the first article of this paper, which contains the substance

of what he communicated to me. It relates to some experiments

which have been performed by a Boyal Commission, of which Pro-

fessor Willis is a member, appointed on the 27th of August, 1847,
“ for the purpose of inquiring into the conditions to be observed

by engineers in the application of iron in structures exposed to

violent concussions and vibration” The object of the experiments

was to examine the effect of the velocity of a train in increasing or

decreasing the tendency of a girder bridge over which the train

is passing to break under its weight. In order to increase the

observed effect, the bridge was purposely made as slight as possible :

it consisted in fact merely of a pair of cast or wrought iron bars,

nine feet long, over which a carriage, variously loaded in different

sets of experiments, was made to pass with different velocities.

The remarkable result was obtained that the deflection of the

bridge increased with the velocity of the carriage, at least up to a

certain point, and that it amounted in some cases to two or three

times the central statical deflection, or that which would be pro-

duced by the carriage placed at rest on the middle of the bridge.

It seemed highly desirable to investigate the motion mathemati-

cally, more especially as the maximum deflection of the bridge,

considered as depending on the velocity of the carriage, had not
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been reached in the experiments*, in some cases because it corre-

sponded to a velocity greater than any at command, in others

because the bridge gave way by the fracture of the bars on increas-

ing the velocity of the carriage. The exact calculation of the

motion, or rather a calculation in which none but really insignifi-

cant quantities should be omitted, would however be extremely

difficult, and would require the solution of a partial differential

equation with an ordinary differential equation for one of the

equations of condition by which the arbitrary functions would have

to be determined. In fact, the forces acting on the body and on

any element of the bridge depend upon the positions and motions,

or rather changes of motion, both of the body itself and of every

other element of the bridge, so that the exact solution of the

problem, even when the deflection is supposed to be small, as it is

in fact, appears almost hopeless.

In order to render the problem more manageable, Professor

Willis neglected the inertia of the bridge, and at the same time

regarded the moving body as a heavy particle. Of course the

masses of bridges such as are actually used must be considerable

;

but the mass of the bars in the experiments was small compared

with that of the carriage, and it was reasonable to expect a near

accordance between the theory so simplified and experiment.

This simplification of the problem reduces the calculation to an

ordinary differential equation, which is that which has been already

mentioned
;
and it is to the discussion of this equation that the

present paper is mainly devoted.

This equation cannot apparently be integrated in finite terms f,

except for an infinite number of particular values of a certain

constant involved in it; but I have investigated rapidly convergent

series whereby numerical results may be obtained. By merely

altering the scale of the abscissae and ordinates, the differential

equation is reduced to one containing a single constant /3, which is

defined by equation (5). The meaning of the letters which appear

in this equation will he seen on referring to th© beginning of

Art. 1. For the present it will be sufficient to observe that /3

varies inversely as the square of the horizontal velocity of the

* The details of the experiments will be found in the Report of the Commission,

jto which the reader is referred.

+ [The integral can fee expressed fey definite integrals. Bee Art. 7, and last

paragraph but one in the paper.]

12—2
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body, so that a small value of ft corresponds to a high velocity, and

a large value to a small velocity.

It appears from the solution of the differential equation

that the trajectory of the body is unsymmetrical with respect to

the centre of the bridge, the maximum depression of the body occur-

ring beyond the centre. The character of the motion depends mate-

rially on the numerical value of ft. When ft is not greater than

the tangent to the trajectory becomes more and more inclined

to the horizontal beyond the maximum ordinate, till the body gets

to the second extremity of the bridge, when the tangent becomes

vertical. At the same time the expressions for the central deflec-

tion and for the tendency of the bridge to break become infinite.

"When ft is greater than the analytical expression for the ordi-

nate of the body at last becomes negative, and afterwards changes

an infinite number of times from negative to positive, and from

positive to negative. The expression for the reaction becomes

negative at the same time with the ordinate, so that in fact the

body leaps.

The occurrence of these infinite quantities indicates one of two

things : either the deflection really becomes very large, after which

of course we are no longer at liberty to neglect its square
;

or else

the effect of the inertia of the bridge is really important. Since

the deflection does not really become very great, as appears from

experiment, we are led to conclude that the effect of the inertia is

not insignificant, and in fact I have shewn that the value of the

expression for the vis viva neglected at last becomes infinite.

Hence, however light be the bridge, the mode of approximation

adopted ceases to be legitimate before the body reaches the second

extremity of the bridge, although it may be sufficiently accurate

for the greater part of the body’s course.

In consequence of the neglect of the inertia of the bridge, the

differential equation here discussed fails to give the velocity for

which T> the tendency to break, is a maximum. When ft is a

good deal greater than T is a maximum at a point not very

near the second extremity of the bridge, so that we may apply the

result obtained to a light bridge without very material error. Let

T
x
be this maximum value. Since it is only the inertia of the

bridge that keeps the tendency to break from becoming extremely

great, it appears that the general effect of that inertia is to

preserve the bridge, so that we cannot be far wrong in regarding
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T
t
as a superior limit to the actual tendency to break. "When J3 is

very large, T may be calculated to a sufficient degree of accuracy

with very little trouble.

Experiments of the nature of those which have been mentioned

may be made with two distinct objects; the one, to analyse experi-

mentally the laws of some particular phenomenon, the other, to

apply practically on a large scale results obtained from experi-

ments made on a small scale. With the former object in view,

the experiments would naturally be made so as to render as con-

spicuous as possible, and isolate as far as might be, the effect which

it was desired to investigate; with the latter, there are certain

relations to* be observed between the variations of the different

quantities which are in any way concerned in the result. These

relations, in the case of the particular problem to which the present

paper refers, are considered at the end of the paper.

1. It is required to determine, in a form adapted to numerical

computation, the value of y in terms of x\ where y' is a function

of x' defined by satisfying the differential equation

d
*i

L

=n 6iL._ (n

with the particular conditions

y = 0, ~y = 0, when x = 0 (2),

the value of y
f

not being wanted beyond the limits 0 and 2c of x.

It will appear in the course of the solution that the first of the

conditions (2) is satisfied by the complete integral of (1), while the

second serves of itself to determine the two arbitrary constants

which appear in that integral.

The equation (1) relates to the problem which has been ex-

plained in the introduction. It was obtained by Professor Willis

in the following manner. In order to simplify to the very utmost

the mathematical calculation of the motion, regard the carriage as

a heavy particle, neglect the inertia of the bridge, and suppose the

deflection very small. Let x\ y be the co-ordinates of the moving

body, x being measured horizontally from the beginning of the

bridge, and y vertically downwards. Let M be the mass of the

body, Fits velocity on entering the bridge, 2c the length of the

bridge, g the force of gravity, S the deflection produced by the
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body placed at rest on the centre of the bridge, R the reaction

between the moving body and the bridge. Since the deflection is

very small, this reaction may be supposed to act vertically, so that

the horizontal velocity of the body will remain constant, and there-

fore equal to V. The bridge being regarded as an elastic bar or

plate, propped at the extremities, and supported by its own stiff-

ness, the depth to which a weight will sink when placed in succes-

sion at different points of the bridge will vary as the weight

multiplied by (2cx - x 2

)

2

,
as may be proved by integration, on

assuming that the curvature is proportional to the moment of the

bending force. Now, since the inertia of the bridge is neglected,

the relation between the depth y' to which the moving body has

sunk at any instant and the reaction R will be the same as if R
were a weight resting at a distance of from the extremity of the

bridge; and we shall therefore have

y'=CR (2cx'-xy,

C being a constant, which may be determined by observing that

we must have y = 8 when R = Mg and x = c; whence

c__s_
Mgo*

’

We get therefore for the equation of motion of the, body

72 t a r

a y gc yw~ 9 ~Jizcx'-x'y

dx
f

which becomes on observing that = V

cPy'
__ g gc

4

y
r

- y* ~ y^s >

which is the same as equation (1), a and b being defined by the

equations

a = f» b=z ws

2. To simplify equation (1) put

x = 2cx, y = 16c
A
ab~

l

y, b =

which gives

d2

y _ o &

y

da?
P (x-a?y (

4).
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It is to be observed that x denotes the ratio of the distance of the

body from the beginning of the bridge to the length of the bridge;

y denotes a quantity from which the depth of the body below the

horizontal plane in which it was at first moving may be obtained

by multiplying by 16

c

4
(x6

_1
or 16$; and /3, on the value of which

depends the form of the body’s path, is a constant defined by the

equation

P
4 7 2$ (5).

3. In order to lead to the required integral of (4), let us first

suppose that x is very small. Then the equation reduces itself to

<ly - o_Py
d«?~ p xi (6 ),

of which the complete integral is

y = +Bx^^ (7),

and (7) is the approximate integral of (4) for very small values of

x. Now the second of equations (2) requires that A = 0, B =0 ,

so that the first term in the second member of equation (7) is the

leading term in the required solution of (4).

4. Assuming in equation (4) y = (pc — x*)
2
z, we get

+ @z = f

3

(8).

Since (4) gives y=(x — x2

)

2 when j3 = oo
, and (5) gives /3 — oo

when F= 0, it follows that z is the ratio of the depression of the

body to the equilibrium depression. It appears also from Art. 3,

that for the particular integral of (8) which we are seeking, z

is ultimately constant when x is very small.

* When the last two terms in (7) take the form {C cos logic)

+D sinolog#)}; and if yx
denote this quantity we cannot in strictness speak of

the limiting value of dyjdx when .r=0. If we give x a small positive value, which

we then suppose to decrease indefinitely, dyjdx will fluctuate between the constantly

increasing limits ± + qD)*+ (JD - <?C) 2}, or Jzx~%y/{(3(C2 + %> 2
)}, since

i)- But the body is supposed to enter the bridge horizontally, that is, in

the direction of a tangent, since the bridge is supposed to be horizontal, so that we
must clearly have C2+D 2 =0, and therefore 0=0, D =0. When /3=| the last two

terms in (7) take the form x&(E +F log#), and we must evidently have JE=0, 0.
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To integrate (8) assume then

z = A
0
4- A

x
x + A 2

x* + ... = tA/c* (9),

and we get

t [i + 2) (i 4- 1) A fit - 22 {% + 3) (i + 2) A,x
i+1

+ 2 (i+ 4) (% + 3) A,xm + /3ZAJ = /3,

or

% {[(i 4- 1) (

i

+ 2) + £] A {
— 2 (i 4- 1) (i 4- 2) AU1

+ (i + l)(i + 2)^}^ = i8 (10)

where it is to he observed that no coefficients J.* with negative

suffixes are to be taken.

Equating to zero the coefficients of the powers 0, 1, 2... of x in

(10), we get

(2 4-/3) A 0 = /3,

(6 + /3)A
%
-l2A

0
~0, &c.

and generally

{ (i 4- 1) (» + 2) 4-/3} A<- 2 (i 4- 1) (i+ 2)

+ (i + l) (< + 2)^ = 0 (11).

The first of these equations gives for A0
the same value which

would have been got from (7). The general equation (11), which

holds good from i = 1 to i = oo
,
if we conventionally regard A_

x
as

equal to zero, determines the constants A
t , A 2 , A s

... one after

another by a simple and uniform arithmetical process. It will be

rendered more convenient for numerical computation by putting it

under the form

A

=

M<-i + M-J
I

1 -
(i + i) (f+ 2)t/s}

(12^ ;

for it is easy to form a table of differences as we go along
;
and

when i becomes considerable, the quantity to be subtracted from

A
{_x

4- A Aw will consist of only a few figures.

5. When i becomes indefinitely great, it follows from (11)

or (12) that the relation between the coefficients A
{
is given by

the equation

A l
-2A

i_l+ A l^0 (13),

of which the integral is

A, = CA G'i (14).
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Hence the ratio of consecutive coefficients is ultimately a ratio

of equality, and therefore the ratio of the (t + l)th term of the

series (9) to the ith is ultimately equal to x. Hence the series is

convergent when x lies between the limits - 1 and 4- 1 ;
and it

is only between the limits 0 and 1 of x that the integral of (8)

is wanted. The degree of convergeney of the series will be ulti-

mately the same as in a geometric series whose ratio is x.

6. When x is moderately small, the series (9) converges so

rapidly as to give ^ with little trouble, the coefficients A ±) A 2
...

being supposed to have been already calculated, as far as may be

necessary, from the formula (12). For larger values, however, it

would be necessary to keep in a good many terms, and the labour

of calculation might be abridged in the following manner.

When i is very large, we have seen that equation (12) reduces

itself to (13), or to A2A^
2
= 0, or, which is the same, A2A

t
— 0.

When i is large, A*A
t
will be small

;
in fact, on substituting in the

small term of (12) the value of A
{
given by (14), we see that

AM* is of the order i~\ Hence A*A
t ,
A*A

{
... will be of the orders

i~
2

, i"
8
..., so that the successive differences of A. will rapidly de-

crease. Suppose i terms of the series (9) to have been calculated

directly, and let it be required to find the remainder. We get by

finite integration by parts

xl xi+1 xi+i

2A^ = const- + A<
~ AA<

(x^Jy + A*A
‘ {x - ij

8
‘

aod taking the sum between the limits i and oo we get

AfX
1 +A i+1

x‘
n

-h ... to inf.

..(15);

z will however presently be made to depend on series so rapidly

convergent that it will hardly be worth while to employ the series

(15), except in calculating the series (9) for the particular value \

of x, which will be found necessary in order to determine a certain

arbitrary constant*

4 A mode of calculating the value of * for £ will presently be given, which is

easier than that here mentioned, unless p be very large. See equation (42) at the

end of this paper.



186 DISCUSSION OF A DIFFERENTIAL EQUATION

7 . If the constant term in equation (4) be omitted, the equa-

tion reduces itself to

fo ,
§1

dx* [X-X*)*
= 0 (16).

The form of this equation suggests that there may be an inte-

gral of the form y = xm (1 - x)
n
. Assuming this expression for trial,

we got

(at _ xy ~y=xm(l-x)n{m(m-l) (l-xY-2mnx (1 -x)+n(n-

1

)*
1

}

=y [rn(m

-

1 )
- 2m

(
m+

n

- 1
)
x+ (to-4-n) (m

+

n- 1

)

as
8

}

.

The second member of this equation will be proportional to y, if

m + n — 1 = 0 (17),

and will be moreover equal to - /3y, if

m2 - m + /3 = 0 (18).

It appears from (17) that m
,
n are the two roots of the quad-

ratic (18). We have for the complete integral of (16)

y = Ax
m

(1 - x)
n + Bxn (1 - x)

m
(19).

The complete integral of (4) may now be obtained by replacing

the constants A, B by functions R, S of x, and employing the

method of the variation of parameters. Putting for shortness

xm (1 — x)
n = u, xn (1 - x)

m — v
,

we get to determine It and S the equations

dR dS Au j- + v = 0
,

ax ax

du dR _^dv dS
__ g

dx dx dx dx

Since % — u =m — n
y
we get from the above equations

dR
__ j3v dS_ ^ fiu

~dx m — n’dx m — n
y

whence we obtain for a particular integral of (4)

ja:
m
(1-*)•£ x" (1 —x)mdx-xn

(1 -x)
n

j
xm (1 -*)"<&>j. . .(20)

;
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and the complete integral will be got by adding together the

second members of equations (19), (20). Now the second member
of equation (20) varies ultimately as x2

,
when x is very small, and

therefore, as shewn in Art. 3, we must have A = 0, B = 0, so that

(20) is the integral we want.

"When the roots of the quadratic (18) are real and commen-
surable, the integrals in (20) satisfy the criterion of integrability,

so that the integral of (4) can be expressed in finite terms without

the aid of definite integrals. The form of the integral will, how-
ever, be complicated, and y may be readily calculated by the

method which applies to general values of /3.

rx rl rl-x

8. Since I F(x) dx = F (x) dx — I F (1 — x) dx, we have
j 0 */ 0 •/ o

from (20)

y=~ZTn K'C1 ~xTf x"
(
l ~x)

mdx-xn
{1 -x)

m

J

1

xm (l - x)
n
dx)

+ {
xn (l-x)m f

X

(l-tc)
mxndx-xm (l-x) n f \l-x)nxmdx}.

71 J 0 J 0

If we put f(x) for the second member of equation (20), the

equation just written is equivalent to

/O) =f(l-x)+<j> (a?) (21),

where

=~—
- [x

m{l-x)n f

1

xn{l-x)mdx-xn{l-x)m f xm(l-x)ndx) . .
.
(22).

7Yb U J Q J 0

Now since m + n = 1,

Jx
n (l—x)m dx-=Jx(x~

x — l)
mdx =—Jvf

1 (w— l)
m
ur*dw—- .

At the limits x= 0 and x = l, we have w = oo and w = 1, s = oo and

s = 0, whence if I denote the definite integral,

i-k*v-'rt'-Cir&r
We get by integration by parts

f s
mds s

m m f s
m~l

ds

Ja+Tj*
= ~

2 (1

+

s)*
+

2 J liTs?

’
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and again by a formula of reduction

' 5™-1 ds

CiT^2
l + s

+

Now /3 being essentially positive, the roots of the quadratic (18)

are either real, and comprised between 0 and 1, or else imaginary

with a real part equal to In either case the expressions which

are free from the integral sign vanish at the limits 5 = 0 and s = oo
,

and we have therefore, on replacing m (1.— m) by its value {3,

T p r*r*d8
2J o l + s *

The function
<f>

(x) will have different forms according as the

roots of (18) are real or imaginary. First suppose the roots real,

and let m = \ + r, n = ^ — r, so that

r = VJ — £ (23).

In this case m is a real quantity lying between 0 and 1, and we
have therefore by a known formula

r
a°

S
m~1

ds _ 7T 7T

J o 1 + s sin rmr cosr7r
^ '

whence we get from (22), observing that the two definite integrals

in this equation are equal to each other,

<f> («)
= ~ {L—V - (y^-) 1 (25).y 4rcosr7r —x) \1 — x) \

This result might have been obtained somewhat more readily

by means of the properties of the first and second Eulerian inte-

grals.

When /3 becomes equal to £, r vanishes, the expression for

<£ (x) takes the form #, and we easily find

(») =J log Y~o (
26)-

When fi> the roots of (18) become imaginary, and r becomes

p V — 1, where

P = (27).

The formula (25) becomes

* (®>

=

-

p (>t~6
-~^ sin

(?
loerb) 8>-
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If / [sc) be calculated from x = 0 to x — equation (21) will

enable us to calculate it readily from #= \ to x = 1, since it is easy

to calculate

9. A series of a simple form, which is more rapidly convergent

than (9) when x approaches the value may readily be investi-

gated.

Let x = \ (1 + to) ;
then substituting in equation (8) we get

• d2

i
A* {(1 -«;*)**} + £*=£ (29).

Assume

z^B
Q
^B

t
w2 + B2

w\..= 2By 1

(30),

then substituting in (29) we get

tBfti (2i - 1 )
- 2

(
2i + 2

) (
2i + 1

) w
2i

+ (2i + 4) (2% + 3) w21*2 + 4*(3w
2i

)
= 4/3,

or,

2 [i(2i - 1) Bt
- 2 [i(2i — 1) — /9] 23^ + »(2» — 1) ^.2)

w2i“2 = 2/3.

This equation leaves B0 arbitrary, and gives on dividing by

i (2& — 1), and putting in succession i =1, i = 2, &c.,

A- 2(l -o) 5»
= 2^ (31),

and generally when i > 1,

A =^ + AA-s
- -^1) (32).

The constants Bv being thus determined, the series (30)

will be an integral of equation (29), containing one arbitrary con-

stant. An integral of the equation derived from (29) by replacing

the second member by zero may be obtained in just the same way

by assuming s = C
0
w 4- C

l
w* + . . . when C

t
,C

2
... will be determined

in terms of Cv which remains arbitrary. The series will both be

convergent between the limits w = — 1 and w = 1, that is, between

the limits cc= 0 and a?=-l. The sum of the two series will be the

complete integral of (29), and will be equal to {x— x2
y*f(cc) if the
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constants B
0 ,
G

0
be properly determined. Denoting the sums of

the two series by F, (w), F
0
(w) respectively, and writing a (x) for

(.*

-

xs
)~*f(x), so that z=a («), we get

o- (x) =Fe
(w) +F0 (

w), a(l-x) = F
e
(w) -

F

0 (w)

;

and since 2F
0
(w) = <r (x) - <r (1 - x) = (x - a;

2

)

-2
cj> (as) by (21), we get

a (x) =Fe
(w) +h(x- a;

2

)

-2
(f>

(x), ) „

o-(l-a:) = F.(w)~ (x)\

To determine B
0
we have

B
0 =*(i) m

which may be calculated by the series (9).

10. The series (9), (30) will ultimately be geometric series

with ratios x,
,
w\ or x, (2# -l) 2

,
respectively. Equating these

ratios, and taking the smaller root of the resulting quadratic, we

get x = £. Hence if we use the series (9) for the calculation of

a (x) from x = 0 to x = and (30) for the calculation of a (#) from

x = \ to x = \}
we shall have to calculate series which are ulti-

mately geometric series with ratios ranging from 0 to

Suppose that we wish to calculate a (x) or z for values of x

increasing by *02. The process of calculation will be as follows.

From the equation (2 + /3)A 0= /3 and the general formula (12),

calculate the coefficients A
0 ,
Av as far as may be necessary.

From the series (9), or else from the series (9) combined with the

formula (15), calculate cr (£) or B
{)%

and then calculate Bv Br ..

from equations (31), (32). Next calculate a(x) from the series

(9) for the values *02, *04,... *26 of x, and F
e
(w

) from (30) for the

values *04, *08..., *44 of w, and lastly (x — x
cf>

(x) for the values

*52, *54..., *98 of x. Then we have <r (#) calculated directly from

aj = 0 to x =*26; equations (33) will give or (x) from x =*28 to

x = *72, and lastly the equation cr (x) = a (1 — x) -f (x — a?
2)""2 (x)

will give cr (x) from x = *74 to x — 1.

11. The equation (21) will enable us to express in finite terms

the vertical velocity of the body at the centre of the bridge. For
according to the notation of Art. 2, the horizontal and vertical co-

ordinates of the body are respectively 2c# and 1G/Sy, and we have

also d. 2cx/dt = V}
whence, if v be the vertical velocity, we get

d.WSydx 88V ,
*

5
— f »•
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But (21) gives/' (J) = £</>' (i), whence if vc be the value of v at the

centre, we get from (25) or (28)

__4<ttSV/3
2 SttSVft

2

Vc
c cos rrr

9 °T
c (e

p7r + e _pTr)

according as fi < >

In the extreme cases in which V is infinitely great and infinitely

small respectively, it is evident that vc must vanish, and therefore

for some intermediate value of V, vc must he a maximum. Since
V cc ft-h when the same body is made to traverse the same bridge

with different velocities, vc will be a maximum when p or q is a

minimum, where

p = 2/3~® cos tit, q = J3~® (e
p7r + e“ p,r

).

Putting for cos ttt its expression in a continued product, and

replacing r by its expression (23) in terms of /3, we get

r-se->(1-^(1 - i^)
whence

The same expression would have been obtained for dlogq/dfi.

Call the second member of equation (36) F(J3), and let ~N, P be
the negative and positive parts respectively of P(/3). When /3 = 0,

N= oo
,
and P = ... = 1, and therefore F (/?) is nega-

tive. When /3 becomes infinite, the ratio of P to N" becomes

infinite, and therefore F (/3) is positive when /3 is sufficiently large

;

and F (/3)
alters continuously with /3. Hence the equation F (/3) = 0

must have at least one positive root. But it cannot have more

than one; for the rates of proportionate decrease of the quantities

FT, P, or — 1/IV. dN/d/3
,
— 1/P . dPjdfS, are respectively

i (i.2+^r+(2.3+/3r+...
(1.2 + /3r~j- (2.3+0)-*+...’

and the several terms of the denominator of the second of these

expressions are equal to those of the numerator multiplied by

1 . 2 + y3, 2 . 3 + /3,. .. respectively, and therefore the denominator is

dlog
J? _ _

dfi 2/3
+

1

,

;
+

2 4- /3
1

2 . 3 + ,8
i + (36).
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equal to the numerator multiplied by a quantity greater than

2 + ft and therefore greater than ft so that the value of the

expression is less than l /ft. Hence for a given infinitely small

increment of /3 the change — dN in N bears to N a greater ratio

than — dP bears to P, so that when N is greater than or equal to

P it is decreasing more rapidly than P, and therefore after having

once become equal to P it must remain always less than P. Hence

vc admits of but one maximum or minimum value, and this must

evidently be a maximum.

When /3= {, iV=2, and P < + 2~3 + *'* or< ^ and there-

fore F(i8) has the same sign as when @ is indefinitely small.

Hence it is q and not p which becomes a minimum. Equating

dq/dj3 to zero, employing (27), and putting 27rp = log, f, we find

= l°Se V* (log. t)'
1
.

The real positive root of this equation will be found by trial to

be 36*3 nearly, which gives p = *5717, /3 = \ -f p
2 = *5768. If V

t
be

the velocity which gives vc a maximum, v
x
the maximum value of

v0 ,
U the velocity due to the height ft we get

gif _ 0 U_
,
and v

t
=

87r/3
2 S

W+ V* o
Vv whence

V
1
= -4655 ^

U, ^ = -6288 U.

12. Conceive a weight W placed at rest on a point of the

bridge whose distance from the first extremity is to the whole

length as x to 1. The reaction at this extremity produced by W
will be equal to (1 — x) W

,
and the moment of this reaction about

a point of the bridge whose abscissa 2cx
l

is less than 2cx will be

2c (1 — x) x
t
W. This moment measures the tendency of the bridge

to break at the point considered, and it is evidently greatest when
x

t
= x

}
in which case it becomes 2c (1 — x) xW. Now, if the inertia

of the bridge be neglected, the pressure E produced by the moving
body will be proportional to (x — and the tendency to break

under the action of a weight equal to R placed at rest on the

bridge will be proportional to (1 — x) x x (x — P)"* y, or to (x ~ xa

) z.
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Call this tendency T, and let T be so measured that it may be

equal to 1 when the moving body is placed at rest on the centre of

the bridge. Then T—C(x — x2

) z, and 1 = (/(£-£), whence

T = 4 (x — x2

)
z.

The tendency to break is actually liable to be somewhat greater

than T
,
in consequence of the state of vibration into which the

bridge is thrown, in consequence of which the curvature is alter-

nately greater and less than the statical curvature due to the same
pressure applied at the same point. In considering the motion of

the body, the vibrations of the bridge were properly neglected, in

conformity with the supposition that the inertia of the bridge is

infinitely small compared with that of the body.

The quantities of which it will be most interesting to calculate

the numerical values are z, which expresses the ratio of the de-

pression of the moving body at any point to the statical depression,

T, the meaning of which has just been explained, and y',the actual

depression. When z has been calculated in the way explained in

Art. 10, T will be obtained by multiplying by 4 (x—x2

) }
and then

y'j8 will be got by multiplying T by 4 (a? — x2
).

13. The following Table gives the values of these three quan-

tities for each of four values of /3, namely and f , to which
correspond r=$, r = 0, p = J, p= 1, respectively. In performing

the calculations I have retained five decimal places in calculating

the coefficients A
0 , Av A2

... and U
0 ,
B

t>
B

2
... and four in calcula-

ting the series (9) and (30). In calculating <jf> (
x

)
I have used four-

figure logarithms, and I have retained three figures in the result.

The calculations have not been re-examined, except occasionally,

when an irregularity in the numbers indicated an error.

Ilf. Let us first examine the progress of the numbers. For

the first two values of /3, z increases from a small positive quantity

up to qo as x increases from 0 to 1. As far as the table goes, z is

decidedly greater for the second of the two values of ft than for

the first. It is easily proved however that before a? attains the

value 1, z becomes greater for the first value of 8 than for the

second. For if we suppose x very little less than 1,/(1 — x) will

be extremely small compared with <p (x), or, in case cf> [x) contain a
sine, compared with the coefficient of the sine. Writing x

t
for

138 . II.
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1 —x, and retaining only the most important term infix), we get
from (21), (25), (26), and (28)

/(*) =
/3

2
-

4r cos tit 1

TT

Wi ‘

00 ^ z* log

or
/3V

p (ep7r -i- e“ p,r

)

aq* sin (37)

according as ft < J, /3 = J, or ft> l; and # will be obtained by
dividing/^) by nearly. Hence if \> /32> ^8X > 0, z is ultimately

incomparably
.

greater when ft — l

3

t
than when ft — ft^ and when

/3 = /32 than when ft = £. Since/(0) - A
0 = /3 (2 + /3)~

1 = (2/T
1 + 1 )~\

f (0) increases with ft, so that /(#) is at first larger when /3 = /32

than when ft =/31 , and afterwards smaller.

When /? > J, £ vanishes for a certain value of x, after which it

becomes negative, then vanishes again and becomes positive, and
so on an infinite number of times. The same will be true of T.

If p be small, f(x) will not greatly differ, except when x is nearly

equal to 1, from what it would be if p were equal to zero, and
therefore / (a?) will not vanish till x is nearly equal to 1. On the

other hand, if p be extremely large, which corresponds to a very

slow velocity, z will be sensibly equal to 1 except when x is nearly

equal to 1, so that in this case also f(x) will not vanish till x is

nearly equal to 1. The table shews that when ft~\, f{oc) first

vanishes between x= *98 and x = 1, and when ft = f between x = *94

and x = *96. The first value of x for which f(x) vanishes is pro-

bably never much less than 1, because as ft increases from f the

denominator p (e
p7r + e~ p7r

)
in the expression for </> (x) becomes

rapidly large.

15. Since when ft > T vanishes when x=Q, and again for a

value of x less than 1, it must be a maximum for some inter-

mediate value. When ft = \ the table appears to indicate a maxi-

mum beyond x = *98. When ft— the maximum value of T is

about 2*61, and occurs when x = *86 nearly. As ft increases

indefinitely, the first maximum value of T approaches indefinitely

to 1, and the corresponding value of x to
-J.

Besides the first

maximum, there are an infinite number of alternately negative

and positive maxima
;
but these do not correspond to the problem,

for a reason which will be considered presently.

13—2
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;

16. The following curves represent the trajectory of the body

for the four values of /3 contained in the preceding table. These

curves, it must he remembered, correspond

to the.ideal limiting case in which the inertia

of the bridge is infinitely small.

In this figure the right line AB repre-

sents the bridge in its position of equi-

librium, and at the same time represents

the trajectory of the body in the ideal limit-

ing: case in which B = 0 or V= cc . AeeeB

represents what may he called the equilibrium

trajectory,
or the curve the body would de-

scribe if it moved along the bridge with an

infinitely small velocity. The trajectories

corresponding to the four values of /3 con-

tained in the above table are marked by

1,1,1, 1; 2,2,2; 3,3,3; 4, 4, 4, 4 respec-

tively. The dotted curve near B is meant

to represent the parabolic arc which the body

really describes after it rises above the hori-

zontal line AB* C is the centre of the

right line AB: the curve AeeeB is symme-

trical with respect to an ordinate drawn

through G.

17. The inertia of the bridge being neg-

lected, the reaction of the bridge against the

body, as already observed, will be repre-

sented by Cy/(x - a?
2

)

2

,
where G depends on

the length and stiffness of the bridge. Since

this expression becomes negative with y,
the

preceding solution will not be applicable

beyond the value of x for which y first

vanishes, unless we suppose the body held

down to the bridge by some contrivance. If

it be fiot so held, which in fact is the case,

it will quit the bridge when y becomes nega-

* The dotted curve ought to have been drawn wholly outside the full curve.

The two curves touch each other at the point where they are cut by the line ACB,

as is represented in the figure.



relating to the breaking of railway bridges. 197

tive. More properly speaking, the bridge will follow the body, in

consequence of its inertia, for at least a certain distance above the

horizontal line AB, and will exert a positive pressure against the

body : but this pressure must be neglected for the sake of consist-

ency, in consequence of the simplification adopted in Art. 1, and

therefore the body may be considered to quit the bridge as soon as

it gets above the line AB. The preceding solution shews that

when ft > £ the body will inevitably leap before it gets to the end

of the bridge. The leap need not be high
;
and in fact it is

evident that it must be very small when ft is very large. In

consequence of the change of conditions, it is only the first maxi-

mum value of T which corresponds to the problem, as has been

already observed.

18. According to the preceding investigation, when ft < \ the

body does not leap, the tangent to its path at last becomes vertical,

and T becomes infinite. The occurrence of this infinite value

indicates the failure, in some respect, of the system of approxima-

tion adopted. Now the inertia of the bridge has been neglected

throughout; and, consequently, in the system of the bridge and

the moving body, that amount of labouring force which is requisite

to produce the vis viva of the bridge has been neglected. If y

be the co-ordinates of any point of the bridge on the same scale on

which x, y represent those of the body, and f be less than x, it may

be proved on the supposition that the bridge may be regarded at

any instant as in equilibrium, that

b
y

jl y1 - x)

r
a? (1 — x)

(38).

When x becomes very nearly equal to 1, y varies ultimately as

(1 — x)l
~r

,
and therefore contains terms involving (1 — and

(dy/dx)
2
,
and consequently (dy/dt)

2 contains terms involving

(1 — #)“3”2r
. Hence the expression for the vis viva neglected at

last becomes infinite
;
and therefore however light the bridge may

be, the mode of approximation adopted ceases to be legitimate

before the body comes to the end of the bridge. The same result

would have been arrived at if ft had been supposed equal to or

greater than J.

19. There is one practical result which seems to follow from

the very imperfect solution of the problem which is obtained when
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the inertia of the bridge is neglected. Since this inertia is the

main cause which prevents the tendency to break from becoming

enormously great, it would seem that of two bridges of equal length

and equal strength, but unequal mass, the lighter would be the

more liable to break under the action of a heavy body moving

swiftly over it. The effect of the inertia may possibly be thought

worthy of experimental investigation.

20. The mass of a rail on a railroad must be so small com-

pared with that of an engine, or rather with a quarter of the mass

of an engine, if we suppose the engine to be a four-wheeled one,

and the weight to be equally distributed between the four wheels,

that the preceding investigation must be nearly applicable till the

wheel is very near the end of the rail on which it was moving,

except in so far as relates to regarding the wheel as a heavy point.

Consider the motion of the fore wheels, and for simplicity suppose

the bind wheels moving on a rigid horizontal plane. Then the

fore wheels can only ascend or descend by the turning of the whole

engine round the hind axle, or else the line of contact of the hind

wheels with the rails, which comes to nearly the same thing. Let
M he the mass of the whole engine, l the horizontal distance

between the fore and hind axles, h the horizontal distance of the

centre of gravity from the latter axle, h the radius of gyration

about the hind axle, x
, y the coordinates of the centre of one of the

fore wheels, and let the rest of the notation be as in Art. 1. Then
to determine the motion of this wheel we shall have

*Qy
(2cx — off

whereas to determine the motion of a single particle whose mass is

\M we should have had

McPy_M^_ Gy
4 df 4 9

Now h must be nearly equal to \l, and ¥ must be a little greater
than

, say equal to Ji
2
,
so that the two equations are very nearly

the same.
J

Hence, ft being the quantity defined by equation (5), where 8
denotes the central statical deflection due to a weight \Mg, it
appears that the rail ought to be made so strong, or else so short,
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as to render /3 a good deal larger than £. In practice, however, a
rail does not rest merely on the chairs, hut is supported throughout
its whole length by ballast rammed underneath.

21. In the case of a long bridge, /3 would probably be large in
practice. When /3 is so large that the coefficient ySV/p (e

p,T + e~<”r),
or w/3se

_^s
nearly, in

<f>
(x) may be neglected, the motion of the

body is sensibly symmetrical with respect to the centre of the
bridge, and consequently T, as well as y, is a maximum when x =
I or this value of x we have 4 (x— ce

2

)
= 1, and therefore z = T= y.

Putting G
t
for the (i + l)

th term of the series (9), so that C<=*At
2~\

we have for x = £

where

and generally.

T=C
0 + C

l + Ci + . .(39)

n — _ @ /v _ ^ (70
K I ) v/j
2+/3 ;

6 4-/3
’

Q — + 1) (i 4- 2) x n X
4 ~

(i + 1) (i+ 2) + 0^ ~ ^
whence Tis easily calculated. Thus for y3 = 5 we have tt/3£ e _7r^ =*031

nearly, which is not large; and we get from the series (39) T= 1*27

nearly. For >3 = 10, the approximate value of the coefficient in

<
f>
{x) is *0048, which is very small, and we get T

—

1*14. In these

calculations the inertia of the bridge has been neglected, but the

effect of the inertia would probably be rather to diminish than to

increase the greatest value of T1

22. The inertia of a bridge such as one of those actually in

use must be considerable : the bridge and a carriage moving over

it form a dynamical system in which the inertia of all the parts

ought to be taken into account. Let it be required to construct

the same dynamical system on a different scale. For this purpose

it will be necessary to attend to the dimensions of the different

constants on which the unknown quantities of the problem depend,

with respect to each of the independent units involved in the

problem. Now if the thickness of the bridge be regarded as very

small compared with its length, and the moving body be regarded

as a heavy particle, the only constants which enter into the prob-

lem are M, the mass of the body, Mr

,
the mass of the bridge, 2c,

the length of the bridge, S, the central statical deflection, V, the



200 DISCUSSION OF A DIFFERENTIAL EQUATION

horizontal velocity of the body, and g, the force of gravity. The

independent units employed in dynamics are three, the unit of

length, the unit of time, and the unit of density, or, which is equi-

valent, and which will be somewhat more convenient in the present

case, the unit of length, the unit of time, and the unit of mass.

The dimensions of the several constants M
,
M', &c., with respect

to each of these units are given in the following table.

Unit of length. Unit of time.

M and M\ 0 0

c and S. 1 0

V. 1 -1
a. 1 -2

Unit of mass.

1

0

0

0

Now any result whatsoever concerning the problem will consist

of a relation between certain unknown quantities x', x" ... and the

six constants just written, a relation which may he expressed by

V,g) = 0 (40).

But by the principle of homogeneity and by the preceding table

this equation must be of the form

x x

(?v W)'"’

3f S
0

if’ o’ eg) (41 ),

where (x), (x
n
)

denote any quantities made up of the six

constants in such a manner as to have with respect to each of the

independent units the same dimensions as x, x" respectively.

Thus, if (40) be the equation which gives the maximum value T
(

of T in terms of the six constants, we shall have but one unknown
quantity x\ where x’ = T

t ,
and we may take for (#'), Meg,

or else

M'V2
. If (40) be the equation to the trajectory of the body, we

shall have two unknown constants, x, x where x' is the same as

in Art. 1, and x" = y, and we may take (

x

)
= c, (%") = c. The

equation (41) shews that in order to keep to the same dynamic

cal system, only on a different scale, we must alter the quantities

M, M\ &c. in such a manner that

M' qc S qc c, V2
oc eg,

and consequently, since g is not a quantity which we can alter at

pleasure in our experiments, V must vary as V& A small system

constructed with attention to the above* variations forms an exact

dynamical model of a larger system with respect to which it may
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be desired to obtain certain results. It is not even necessary for

the truth of this statement that the thickness of the large bridge

be small in comparison with its length, provided that the same

proportionate thickness be preserved in the model.

To take a numerical example, suppose that we wished, by

means of a model bridge five feet long and weighing 100 ounces,

to investigate the greatest central deflection produced by an

engine weighing 20 tons, which passes with the successive velo-

cities of 80, 40, and 50 miles an hour over a bridge 50 feet long

weighing 100 tons, the central statical deflection produced by

the engine being one inch. We must give to our model carriage

a weight of 20 ounces, and make the small bridge of such a stiff-

ness that a weight of 20 ounces placed on the centre shall cause

a deflection of ^th of an inch; and then we must give to the

carriage the successive velocities of 3a/10, 4a/10, 5 a/10, or 9*49,

12-65, 15*81 miles per hour, or 13*91, 18*55, 23*19 feet per second.

If we suppose the observed central deflections in the model to be

*12, *16, *18 of an inch, we may conclude that the central deflec-

tions in the large bridge corresponding to the velocities of 30, 40,

and 50 miles per hour would be 1*2, 1*6, and 1*8 inch.

Addition to the 'preceding Paper.

Since the above was written, Professor Willis has informed me
that the values of y3 are much larger in practice than those which

are contained in Table I., on which account it would be interesting

to calculate the numerical values of the functions for a few larger

values of yS. I have accordingly performed the calculations for

the values 3, 5, 8, 12, and 20. The results are contained in

Table II. In calculating z from x = 0 to x = *5, I employed the

formula (12), with the assistance occasionally of (15). I worked

with four places of decimals, of which three only are retained.

The values of z for x = *5, in which case the series are least con-

vergent, have been verified by the formula (42) given below : the

results agreed within twd or three units in the fourth place of

decimals. The remaining values of z were calculated from the
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expression for (x — (#). The values of T and yjS were

deduced from those of z> by merely multiplying twice in succes-

sion by 4x (l — x). Professor Willis has laid down in curves the

numbers contained in the last five columns. In laying down
these curves several errors were detected in the latter half of the

Table, that is, from x — *55 to x *95. These errors were corrected

by re-examining the calculation; so that I feel pretty confident

that the table as it now stands contains no errors of importance.

The form of the trajectory will be sufficiently perceived by
comparing this table with the curves represented in the figure.

As ft increases, the first point of intersection of the trajectory with

the equilibrium trajectory eee moves towards A . Since z = 1 at

this point, we get from the part of the table headed “ z,” for the

abscissa of the point of intersection, by taking proportional parts,

*34, *29, *26, *24, and *22, corresponding to the respective values

3, 5, 8
, 12, and 20 of ft. Beyond this point of intersection the

trajectory passes below the equilibrium trajectory, and remains

below it during the greater part of the remaining course. As ft

increases, the trajectory becomes more and more nearly sym-

metrical with respect to C

:

when ft = 20 the deviation from sym-

metry may be considered insensible, except close to the extremities

A, JB, where however the depression itself is insensible. The

greatest depression of the body, as appears from the column which

gives y\ takes place a little beyond the centre; the point of

greatest depression approaches indefinitely to the centre as ft

increases. This greatest depression of the body must be carefully

distinguished from the greatest depression of the bridge, which

is decidedly larger, and occurs in a different place, and at a dif-

ferent time. The numbers in the columns headed “ T

”

shew that

T is a maximum for a value of x greater than that which renders

y
f

a maximum, as in fact immediately follows from a consideration

of the mode in which y' is derived from T. The first maximum
value of Tf

which according to what has been already remarked

is the only such value that we need attend to, is about 1*59 for

J3 = 3, 1*33 for (3 = 5, 1*19 for ft = 8, Til for ft = 12, and 1*06 for

/3= 20.

When ft is equal to or greater than 8, the maximum value

of T occurs so nearly when x = *5 that it will be sufficient to sup-

pose x = *5. The value of z, 1\ or y’fB for x= *5 may be readily
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calculated by tbe method explained in Art. 21. I have also ob-

tained the following expression for this particular value

2 = 2/3-4/3
2

|r^g-2 T^ + 374T+£--} (42) ‘

When /3 is small, or only moderately large, the series (42)

appears more convenient for numerical calculation, at least with

the assistance of a table of reciprocals, than the series (39), but

when /3 is very large the latter is more convenient than the

former. In using the series (42), it will be best to sum the series

within brackets directly to a few terms, and then find the re-

mainder from the formula

^-^+1 +^+2
- ••• =2 ux

- + — ...

The formula (42) was obtained from equation (20) by a trans-

formation of the definite integral. In the transformation of Art. 8,

the limits of s will be 1 and oo
,
and the definite integral on which

the result depends will be

The formula (42) may be obtained by expanding the denomi-

nator, integrating, and expressing m in terms of /3.

In practice the values of /3 are very large, and it will be con-

venient to expand according to inverse powers of /3. This may be

easily effected by successive substitutions. Putting for shortness

x — a? = X, equation (4) becomes by a slight transformation

and we have for a first approximation y =X2
, for a second

y=X2 — jS"
1X 2

. cPX2
jda?,

and so on. The result of the successive substitutions may be ex-

pressed as follows

:

(43),

where each term, taken positively, is derived from the preceding by

differentiating twice, and then multiplying by /3~lX2
.

For such large values of /?, we need attend to nothing but the

value of z for a? = and this may be obtained from (43) by putting
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x = after differentiation, and multiplying by 16. It will how-

ever be more convenient to replace x by £ (1 + w), which gives

d*/dx
2 = 4 . d2jdw2

;
X2 = TV IF, where W= (1 - w2

)

2
. We thus get

from (43)

where we must put w = 0 after differentiation, if we wish to get

the value of z for x — \. This equation gives, on performing the

differentiations and multiplications, and then putting w = 0,

* = 1 + S~
x + f/3~

2 + 13/9"3 + (44).

In practical cases this series may be reduced to 1 + /3“\ The
latter term is the same as would be got by taking into account the

centrifugal force, and substituting, in the small term involving that

force, the radius of curvature of the equilibrium trajectory for the

radius of curvature of the actual trajectory. The problem has

already been considered in this manner by others by whom it has

been attacked.

My attention has recently been directed by Professor Willis

to an article by Mr Cox On the Dynamical Deflection and Strain

of Railway Girders
,
which is printed in The Civil Engineer and

Architects Journal for September, 1848. In this article the

subject is treated in a very original and striking manner. There

is, however, one conclusion at which Mr Cox has arrived which

is so directly opposed to the conclusions to which I have been led,

that I feel compelled to notice it. By reasoning founded on the

principle of vis viva
,
Mr Cox has arrived at the result that the

1

moving body cannot in any case produce a deflection greater than

double the central statical deflection, the elasticity of the bridge

being supposed perfect. But among the sources of labouring force

which can be employed in deflecting the bridge, Mr Cox has omitted

to consider the vis viva arising from the horizontal motion of the

body. It is possible to conceive beforehand that a portion of this

vis viva should be converted into labouring force, which is ex-

pended in deflecting the bridge. And this is, in fact, precisely

what takes place. During the first part of the motion, the hori-

zontal component of the reaction of the bridge against the body

impels the body forwards, and therefore increases the vis viva due

to the horizontal motion
;
and the labouring force which produces

this increase being derived from the bridge, the bridge is less
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deflected than it would have teen had the horizontal velocity of the

body been unchanged. But during the latter part of the motion

the horizontal component of the reaction acts backwards, and a

portion of the vis viva due to the horizontal motion of the body is

continually converted into labouring force, which is stored up in the

bridge. Now, on account of the asymmetry of the motion, the

direction of the reaction is more inclined to the vertical when the

body is moving over the second half of the bridge than when it is

moving over the first half, and moreover the reaction itself is

greater, and therefore, on both accounts, more vis viva depending

upon the horizontal motion is destroyed in the latter portion of

the body’s course than is generated in the former portion; and

therefore, on the whole, the bridge is more deflected than it would

have been had the horizontal velocity of the body remained un-

changed.

It is true that the change of horizontal velocity is small
;
but

nevertheless, in this mode of treating the subject, it must be taken

into account. Bor, in applying to the problem the principle of

vis viva
,
we are concerned with the square of the vertical velocity,

and we must not omit any quantities which are comparable with

that square. Now the square of the absolute velocity of the body

is equal to the sum of the squares of the horizontal and vertical

velocities; and the change in the square of the horizontal velocity

depends upon the product of the horizontal velocity and the

change of horizontal velocity; but this product is not small in

comparison with the square of the vertical velocity.

In Art. 22 I have investigated the changes which we are allowed

by the general principle of homogeneous quantities to make in

the parts of a system consisting of an elastic bridge and a travel-

ling weight, without affecting the results, or altering anything but

the scale of the system. These changes are the most general that

we are at liberty to make by virtue merely of that general prin-

ciple, and without examining the particular equations which relate

to the particular problem here considered. But when we set down
these equations, we shall see that there are some further changes

which we may make without affecting our results, or at least

without ceasing to be able to infer the results which would be

obtained on one system from those actually obtained on another.

In an apparatus recently constructed by Professor Willis, which
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will be described in. detail in the report of the commission, to which

the reader has already been referred, the travelling weight moves

over a single central trial bar, and is attached to a horizontal arm

which is moveable, with as little friction as possible, about a

fulcrum carried by the carriage. In this form of the experiment,

the carriage serves merely to direct the weight, and moves on rails

quite independent of the trial bar. For the sake of greater gene-

rality I shall suppose the travelling weight, instead of being free,

to be attached in this manner to a carriage.

Let M be the mass of the weight, including the arm, h the

radius of gyration of the whole about the fulcrum, h the horizontal

distance of the centre of gravity from the fulcrum, l the horizontal

distance of the point of contact of the weight with the bridge, x
, y

the co-ordinates of that point at the time t
, £, rj those of any

element of the bridge, R the reaction of the bridge against the

weight, M' the mass of the bridge, R', R" the vertical pressures

of the bridge at its two extremities, diminished by the statical

pressures due to the weight of the bridge alone. Suppose, as

before, the deflection to be very small, and neglect its square.

By D’Alembert’s principle the effective moving forces reversed

will be in statical equilibrium with the impressed forces. Since

the weight of the bridge is in equilibrium with the statical pres-

sures at the extremities, these forces may be left out in the equa-

tions of equilibrium, and the only impressed forces we shall have

to consider will be the weight of the travelling body and the

reactions due to the motion. The mass of any element of the

bridge will be M'/2c . dg very nearly
;
the horizontal effective force

of this element will be insensible, and the vertical effective force

will be M'/2c . d2
r}/df . d%, and this force, being reversed, must be

supposed to act vertically upwards.

The curvature of the bridge being proportional to the moment
of the bending forces, let the reciprocal of the radius of curvature

be equal to K multiplied by that moment. Let A , B be the

extremities of the bridge, P the point of contact of the bridge

with the moving weight, Q any point of the bridge between A
and P. Then by considering the portionAQ of the bridge we get,

taking moments round Q)

d\
d?

=K |ir* + ~
J*

(f - F) } (45).
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vf being the same function of that rj is of To determine

let S be the central statical deflection produced by the weight Mg
resting partly on the bridge and partly on the fulcrum, which is

equivalent to a weight h/l.Mg resting on the centre of the bridge.

In this case we should have

K Mgh
d% 2 1

*

Integrating this equation twice, and observing that d7)/d% = 0

when £ = c, and rj — 0 when £ = 0, and that 8 is the value of rj

when % — c, we get

K= 6 IS

Mghc8 (46).

Returning now to the bridge in its actual state, we get to de-

termine B! ,
by taking moments about B,

R'.2c-B (2c ~x) + Yc f*W (2c_r) ^' = 0 (47 )‘

Eliminating R' between (45) and (47), putting for K its value

given by (46), and eliminating t by the equation dx/dt= V, we get

d\
dr

SIS

Mghc* (2c — x) %R —
M'V*
2c

tdty

dad ?<*r

• (48),

This equation applies to any point of the bridge between A
and P. To get the equation which applies to any point between

P and P, we should merely have to write 2c— £ for £, 2c — x for x.

If we suppose the fulcrum to be very nearly in the same hori-

zontal plane with the point of contact, the angle through which

the travelling weight turns will be y/l very nearly
;
and we shall

have, to determine the motion of this weight,

mv°3 =MgU ~w
We have also the equations of condition,

ij — 0 when x = 0, for any value of £ from 0 to 2c
; ]

r) = y when f = x, for any value of x from 0 to 2c; l .(50).

V = 0 when f = 0or = 2c; y = 0 and dyjdx = 0 when x = 0
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Now the general equations (48), (or the equation answering to

it which applies to the portion PB of the bridge,) and (49),, com-

bined with the equations of condition (50), whether we can manage

them or not, are sufficient for the complete determination of the

motion, it being understood that tj and drjjdt; vary continuously in

passing from AP to PB, so that there is no occasion formally to

set down the equations of condition which express this circum-

stance. Now the form of the equations shews that, being once

satisfied, they will continue to be satisfied provided rj x y,

% oc x x c, and

y ISR ISM'V2

y
<?'
X
Mgh<?

CC
Mghc*

’ MlfV2

1
oc Mghl oc nr.

These variations give, on eliminating the variation of R,

9<>

V2Sy OC S, -~o7V OC X To
V M
hr M r

p
k2 .(51).

Although g is of course practically constant, it has been

retained in the variations because it may be conceived to vary,

and it is by no means essential to the success of the method that

it should be constant. The variations (51) shew that if we have

any two systems in which the ratio of MB2
to M l

2
is the same, and

we conceive the travelling weights to move over the two bridges

respectively, with velocities ranging from 0 to oo, the trajectories

described in the one case, and the deflections of the bridge, corre-

spond exactly to the trajectories and deflections in the other case,

so that to pass from one to the other, it will be sufficient to alter

all horizontal lines on the same scale as the length of the bridge,

and all vertical lines on the same scale as the central statical

deflection. Thk velocity in the one system which corresponds to a

given velocity in the other is determined by the second of the

variations (51).

We may pass at once to the case of a free weight by putting

h~Jc~ l, which gives

yocS, V2S oc gc
2
,
MacM'.. (52).

The second of these variations shews that corresponding veloci-

ties in the two systems are those which give the same value to the

constant /3. When S oc c we get F 2
oc go, which agrees with

Art. 22.

S. II. 14
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In consequence of some recent experiments of Professor Willis’s,

from which it appeared that the deflection produced by a given

weight travelling over the trial bar with a given velocity was in

some cases increased by connecting a balanced lever with the

centre of the bar, so as to increase its inertia without increasing its

weight, while in other cases the deflection was diminished, I have

been induced to attempt an approximate solution of the problem,

taking into account the inertia of the bridge. I find that when we

replace each force acting on the bridge by a uniformly distributed

force of such an amount as to produce the same mean deflection

as would be produced by the actual force taken alone, which

evidently cannot occasion any very material error, and when we

moreover neglect the difference between the pressure exerted by

the travelling mass on the bridge and its weight, the equation

admits of integration in finite terms.

Let the notation be the same as in the investigation which

immediately precedes; only, for simplicity’s sake, take the length

of the bridge for unity, and suppose the travelling weight a heavy

particle. It will be easy in the end to restore the general unit of

length if it should be desirable. It will be requisite in the first

place to investigate the relation between a force acting at a given

point of the bridge and the uniformly distributed force which

would produce the same mean deflection.

Let a force F act vertically downwards at a point of the bridge

whose abscissa is x, and let y be the deflection produced at that

point. Then, rj being the co-ordinates of any point of the bridge,

we get from (38)

To obtain fjydl;, we have only got to write 1-cc m place

of x. Adding together the results, and observing that, according

to a formula referred to in Art. 1, y — 16S . F/Mg . F (1 -x)
a
, we

obtain

JoVSf = O'
- ®) + (1 - »)*} (53) ;

and this integral expresses the mean deflection produced by the

force F, since the length of the bridge is unity.
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Now suppose the bridge subject to the action of a uniformly

distributed force F'. In this case we should have

** = // (£ - f') Fd?} = *KF (i-n
Integrating this equation twice, and observing that d7]/d^= 0

when g=i, and = 0 when £ = 0, and that (46) gives, on putting

l=h and c=\,K= iSS/Mg, we obtain

+ (54).

This equation gives for the mean deflection

^° vd^ = 5Mg (55);

and equating the mean deflections produced by the force F acting

at the point whose abscissa is x, and by the uniformly distributed

force F\ we get F' — uF, where

u = ox (1 — x) + 5x2
(1 — x

f

(56).

Putting fi for the mean deflection, expressing Fe

in terms of fi,

and slightly modifying the form of the quantity within parentheses

in (54), we get for the equation to the bridge when at rest under

the action of any uniformly distributed force

{z (w)+r (i-m w
If I) be the central deflection, rj =D when £ = so that

D
: fi :: 25 : 16.

Now suppose the bridge in motion, with the mass M travelling

over it, and let x
} y be the co-ordinates of M. As before, the

bridge would be in equilibrium under the action of the force

M (g — d2
y/dt

2

)
acting vertically downwards at the point whose

abscissa is x, and the system of forces such as M'dg. d 2
r)/dtf acting

vertically upwards at the several elements of the bridge. Accord-

ing to the hypothesis adopted, the former force may be replaced by

a uniformly distributed force the value of which will be obtained

by multiplying by u, and each force of the latter system may be

replaced by a uniformly distributed force obtained by multiplying

by u, where u is what u becomes when £ is put for x. Hence if

F
x
be the whole uniformly distributed force we have

fS''* (58>-

14—2
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Now according to our hypothesis the bridge must always have

the form which it would assume under the action of a uniformly

distributed force; and therefore, if /x be the mean deflection at the

time t
} (57) will be the equation to the bridge at that instant.

Moreover, since the point (x, y) is a point in the bridge, we must

have 7j~y when £= x, whence y = /m. We have also

, d*7) 155 dy
126 df

'

We get from (55), Ft
= 5Mg/iJ28. Making these various sub-

stitutions in (58), and replaeing d/dt by V.d/dx, we get for the

differential equation of motion

^ n = Mgu-MV*u
d2gu
dx2
— Jf'F*—
126 dx*’

(59).

Since fi is comparable with S, the several terms of this equa-

tion are comparable with

Mg, Mg, MV2S
,
M'V%

respectively. If then "F# be small compared with g, and likewise

M small compared with we may neglect the third term, while

we retain the others. This term, it is to be observed, expresses

the difference between the pressure on the bridge and the weight

of the travelling mass. Since c= we have V 2
S/g = 1/16)9, which

will be small when fi is large, or even moderately large. Hence

the conditions under which we are at liberty to neglect the differ-

ence between the pressure on the bridge and the weight of the

travelling mass are, first,
that fi be large, secondly

,
that the mass

of the travelling body be small compared with the mass of the

bridge. If fi be large, but M be comparable with M'
}

it is true

that the third term in (59) will be small compared with the lead-

ing terms; but then it will be comparable with the fourth, and the

approximation adopted in neglecting the third term alone would

be faulty, in this way, that of two small terms comparable with

each other, one would be retained while the other was neglected.

Hence, although the absolute error of our results would be but

small, it would be comparable with the difference between the

results actually obtained and those which would be obtained on

the supposition that the travelling mass moved with an infinitely

small velocity.
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Neglecting the third term in equation (59), and putting for u

its value, we get

where

ft + gV = 2g
2
/S’ (® - 2 a:

3 +%
ax

s 63% _1008%
2 ~31%F!£ 31% ‘

The linear equation (60) is easily integrated. Integrating, and

determining the arbitrary constants by the conditions that fi = 0,

and dfi/dx = 0, when x = 0, we get

94 1

+ Y (
x - cos

?®)J
(62);

and we have for the equation to the trajectory

y=z5fi(x — + x4

)
= 5/i(X~hX2

) (63),

where as before X~x (1 — x).

When V— 0, g=oc, and we get from (62), (63), for the

approximate equation to the equilibrium trajectory,

y=10S(X+X 2

)

2

(64);

whereas the true equation is

y = 16SX2
(65).

Since the forms of these equations are very different, it will be

proper to verify the assertion that (64) is in fact an approximation

to (65). Since the curves represented by these equations are both

symmetrical with respect to the centre of the bridge, it will be

sufficient to consider values of x from 0 to to which correspond

values of X ranging from 0 to Denoting the error of the

formula (64), that is the excess of the y in (64) over the y in (65),

by S8, we have

S =-6X2
-f 20X3 + 10X4

,

~ = 4 (— 3 + 15X + 10%)X~.
ax v ax

Equating d8/dx to zero, we get X= 0, x = 0, 8 = 0, a maximum;
X — T787, x = *233, 8 = — *067, nearly, a minimum; and x = ^}

S = — *023, nearly, a maximum. Hence the greatest error in the
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approximate value of the ordinate of the equilibrium trajectory is

equal to about the one-fifteenth of S.

Putting fi = /i
0 +/q, y = y0 +yv where /ul

0 , yQ
are the values of

lx, y for q = oo
,
we have

h = 2$ ^x(l-x) - (i + sin ?* + p(l
“ cos ?*)]— (66)>

2q = 5x (1 - x) {1 + x (1 - a?)} Aq (67).

The values of fit
and y1

may be calculated from these formulae

for different values of q,
and they are then to be added to the

values of jjl
0 , yQ) respectively, which have to be calculated once for

all. If instead of the mean deflection fx we wish to employ the

central deflection D, we have only got to multiply the second sides

of equations (62), (66) by ff, and those of (63), (67) by Jf, and to

write D for y. The following table contains the values of the

ratios of D and y to S for ten different values of q, as well as for

the limiting value q = oo
,
which belongs to the equilibrium tra-

jectory.

The numerical results contained in Table III. are represented

graphically in figs. 2 and 3 of the woodcut on p. 216, where how-

ever some of the curves are left out, in order to prevent confusion

in the figures. In these figures the numbers written against the

several curves are the values of 2^/tt to which the curves respect-

ively belong, the symbol oo being written against the equilibrium

curves. Fig. 2 represents the trajectory of the body for different

values of q, and will be understood without further explanation.

In the curves of fig. 3, the ordinate represents the deflection of

the centre of the bridge when the moving body has travelled over

a distance represented by the abscissa. Fig. 1, which represents

the trajectories described when the mass of the bridge is neglected,

is here given for the sake of comparison with fig. 2. The num-
bers in fig. 1 refer to the values of /3. The equilibrium curve
represented in this figure is the true equilibrium trajectory ex-

pressed by equation (65), whereas the equilibrium curve repre-

sented in fig. 2 is the approximate equilibrium trajectory ex-
pressed by equation (64). In fig. 1, the body is represented as

flying off near the second extremity of the bridge, which is in fact

the case. The numerous small oscillations which would take
place if the, body were held down to the bridge could not be
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TABLE III.

Values of ^ when ~ is equal to
O T

X 1 2 3 4 5 6 8 10 12 16 00

•00 •000 •000 •000 •000 •000 •000 •000 •000 •000 *000 •000
*05 *004 •004 •005 •006 •007 •008 *014 •019 •025 •041 •156
*10 •009 •013 •022 •027 •037 •053 •081 *117 •158 •239 •307
*15 •017 *028 •048 •075 •108 •146 *234 •327 •412 *580 •449
*20 •025 •052 *099 •159 •231 •309 *469 •607 •696 •707 •580
*25 •041 •093 •177 •285 •406 •531 •746 •871 *884 •707 •696
*30 •056 •144 •282 •451 •626 •787 1-003 1-031 *915 •689 •794
*35 •070 •214 •418 •650 •871 1-045 1-180 1-052 *845 •814 •873
*40 *100 •300 •578 •870 1-115 1-265 1-238 •967 •796 1-017 •930
*45 •134 •399 •757 1-097 1-332 1-412 1-178 *859 *856 1-097 •965
*50 -169 •516 •947 1-310 1-492 1-460 1-036 •812 1*004 •991 •977
*55 •213 •640 1*139 1*491 1*574 1*403 •870 •860 1*127 •862 •965
*60 *256 •776 1*321 1-619 1*562 1-250 •739 •969 1-115 •872 •930
*65 *306 •913 1*482 1-681 1-454 1-027 •682 1*054 *948 *959 •873
*70 *359 1-050 1-609 1-663 1-257 •769 *695 1*031 •718 •924 •794
*75. *419 1*181 1*691 1*560 •990 *517 *746 •869 *549 •707 •696
*80 *475 1-296 1-717 1-371 *677 *303 *777 •604 *499 •472 *580
*85 *533 1*399 1-681 1-106 •350 •149 *733 •325 *516 *384 •449
*90 •586 1-476 1-588 •776 •037 •064 *579 •117 *477 •385 •307
*95 *646 1-525 1*402 •400 -•234 •025 *321 •021 *296 •276 •156

1*00 *699 1*540 1-158 •000 -•446 •019 *000 *001 -*001 •000 •000

Values of — when — is equal to
o 7

r

X l 2 3 4 5 6 8 10 12 16 m
*00 *000 El mBIB *000 *000 BH
•05 *001 *001 BH *002 *003 *004 •025
•10 •003 *004 *008 •012 iwa •037 *050
*15 *008 -013 BHMIH1 IlgmH *108 •150 *190 •244 •207
*20 *015 *031 BH *137 •184 *279 *360 *414 •420 •344
•25 *029 *056 *126 *203 fkkltl •378 *532 *621 *630 mmm •496

•ao *045 *117 Mr*! *366 *509 mzxm •814 •839 *744 •560 •646
•35 *063 *191 •374 •581 *778 •934 1-054 *940 •755 •727 *780
•40 •096 •285 *550 •828 1-062 1-205 1*178 *921 *759 •969 •886
*45 •183 *394 *748 1*085 1-316 1*395 1*164 •849 *846 1-084 •954
•50 *169 *516 *947 1-310 1*492 1-460 1-086 •812 1*004 •991 •977
•55 *210 *632 1-126 1-473 1-555 1-387 *860 •850 1*114 *852 •954
•60 •244 *739 1*258 1*542 1*487 1*191 •704 •923 1-062 •830 *886

•65 •274 *816 1-325

,

1-502 1-300 *917 •609 •942 *848 •857 •780
•70 *292 *854 1-308 1*352 1*022 •626 •565 *839 *584 •752 •646
•75 •298 •842 1*205 1-111 •705 •369 *582 *619 *391 •488 *496

•80 *282 *770 1-020 •814 *402 •180 *462 •359 *297 •280 *344

•85 •245 *644 •774 wtmm •161 *337 •149 *237 •178 •207

•90 •184 *463 •498 •2449 •182 *150 •121 Emu
•95 *103 •243 •224 •064 -*037 •004 *051 •003 •047 •044 •025

1*00 •000 •000 *000 •000 *000 •000 *000 •000 *000 •000 *000
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properly represented in the figure without using a much larger

Z2 The reader is however requested to hear m mmd the

existence of these oscillations, as indicated by the analysis, because,

R

neither very small nor very

As everything depends on the value of q, in the approximate

investigation in which the inertia of the bridge is taken into

account, it will he proper to consider further the yeaning of this

constant. In the first place it is to be observed that although

M appears in equation (61), q is really independent of the mass

of the travelling body. For, when M alone vanes, 0 vanes in-

versely as S, and 8 varies directly as Jf, so that q remains constant

To get rid of the apparent dependence of q on M let

^
be‘

central statical deflection produced by a mass equal to that of the
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bridge, and at the same time restore the general -unit of length.

If x continue to denote the ratio of the abscissa of the body to the

length of the bridge, q will be numerical, and therefore, to restore

the general unit of length, it will be sufficient to take the general

expression (5) for j3. Let moreover r be the time the body takes

to travel over the bridge, so that 2c = Vr
;
then we get

(
68 ).

If we suppose t expressed in seconds, and S
x
in inches, we must

put g = 32*2 x 12 = 386, nearly, and we get,

2 =
28t

(69).

Conceive the mass M removed; suppose the bridge depressed

through a small space, and then left to itself. The equation of

motion will be got from (59) by putting ikT= 0, where M is not

divided by $, and replacing M/S by M'/Sv and V. d/dx by d/dt

We thus get

and therefore, if P be the period of the motion, or twice the time

of oscillation from rest to rest,

p-^s/U‘ ; <70>-

Hence the numbers 1, 2, 3, &c., written at the head of Table III.

and against the curves of figs. 2 and 3, represent the number of

quarter periods of oscillation of the bridge which elapse during

the passage of the body over it. This consideration will materially

assist us in understanding the nature of the motion. It should be

remarked too that q is increased by diminishing either the velocity

of the body or the inertia of the bridge.

In the trajectory 1
,
fig. 2, the ordinates are small because the

body passed over before there was time to produce much deflection

in the bridge, at least except towards the end of the body's course,

where even a large deflection of the bridge would produce only a

small deflection of the body. The corresponding deflection curve,

(curve 1, fig. 3,) shews that the bridge was depressed, and that its

deflection was rapidly increasiug, when the body left it. When
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the body is made to move with velocities successively one-half and

one-third of the former velocity, more time is allowed for deflecting

the bridge, and the trajectories marked 2, 3, are described, in

which the ordinates are far larger than in that marked 1. The

deflections too, as appears from fig. 3, are much larger than before,

or at least much larger than any deflection which was produced in

the first case while the body remained on the bridge. It appears

from Table III, or from fig. 3, that the greatest deflection occurs

in the case of the third curve, nearly, and that it exceeds the

central statical deflection by about three-fourths of the whole.

When the velocity is considerably diminished, the bridge has time

to make several oscillations while the body is going over it. These

oscillations may be easily observed in fig. 3, and their effect on

the form of the trajectory, which may indeed be readily under-

stood from fig. 3, will be seen on referring to fig. 2.

When q is large, as is the case in practice, it will be sufficient

in equation (66) to retain only the term which is divided by the

first power of q. With this simplification we get

A
s

2d U>. 2.D . yp, v

= lQS
=~ SmqX (/1);

8q

so that the central deflection is liable to be alternately increased

and decreased by the fraction 2o/8q of the central statical deflec-

tion. By means of the expressions (61), (69), we get

(72,

It is to be remembered that in the latter of these expressions

the units of space and time are an inch and a second respectively.

Since the difference between the pressure on the bridge and weight

of the body is neglected in the investigation in which the inertia

of the bridge is considered, it is evident that the result will be

sensibly the same whether the bridge in its natural position b©

straight, or be slightly raised towards the centre, or, as it is tech-

nically termed, cambered. The increase of deflection in the case

first investigated would be diminished by a camber.

In this paper the problem has been worked out, or worked out

approximately, only in the two extreme cases in which the mass of

the travelling body is infinitely great and infinitely small respect-

ively, compared with the mass of the bridge. The causes of the
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increase of deflection in these two extreme cases are quite distinct.

In the former case, the increase of deflection depends entirely on

the difference between the pressure.on the bridge and the weight

of the body, and may be regarded as depending on the centrifugal

force. In the latter, the effect depends on the manner in which
’ the force, regarded as a function of the time, is applied to the

bridge. In practical cases the masses of the body and of the

bridge are generally comparable with each other, and the two

effects are mixed up in the actual result. Nevertheless, if we find

that each effect, taken separately, is insensible, or so small as to be

of no practical importance, we may conclude without much fear of

error that the actual effect is insignificant. Now we have seen

that if we take only the most important terms, the increase of

deflection is measured by the fractions 1/J3 and 25/Sq of S. It is

only when these fractions are both small that we are at liberty to

neglect all but the most important terms, but in practical cases

they are actually small. The magnitude of these fractions will

enable us to judge of the amount of the actual effect.

To take a numerical example lying within practical limits, let

the span of a given bridge be 44 feet, and suppose a weight equal

*
to | of the weight of the bridge to cause a deflection of

fa
inch.

These are nearly the circumstances of the Ewell bridge, mentioned

in the report of the commissioners. In this case, = f x *2 = *15;

and if the velocity be 44 feet in a second, or 30 miles an hour, we

have r = 1, and therefore from the second of the formulae (72),

— = '0434, q = 721 = 45'9 x |

.

The travelling load being supposed to produce a deflection of

2 inch, we have /3= 127, l//3 = *0079. Hence in this case the

deflection due to the inertia of the bridge is between 5 and 6 times

as great as that obtained by considering the bridge as infinitely

light, but in neither case is the deflection important. With a

velocity of 60 miles an hour the increase of deflection '0434$ would

be doubled.

In the case of one of the long tubes of the Britannia bridge /3

must be extremely large; hut on account of the enormous mass of

the tube it migbit be feared that the effect of the inertia of the tube

itself would be of importance. To make a supposition every way
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disadvantageous, regard the tube as unconnected with the rest of

the structure, and suppose the weight of the whole train collected

at one point. The clear span of one of the great tubes is 460 feet,

and the weight of the tube 1400 tons. When the platform on

which the tube had been built was removed, the centre sank 10

inches, which was very nearly what had been calculated, so that

the bottom became very nearly straight, since, in anticipation of

the deflection which would be produced by the weight of the tube

itself, it had been originally built curved upwards. Since a uni-

formly distributed weight produces the same deflection as fths of

the same weight placed at the centre, we have in this case

$i = f x 10 = 16; and supposing the train to be going at the rate

of 30 miles an hour, we have t = 460 ~ 44 = 10*5, nearly. Hence

in this case 25/8# = ‘043, or ^ nearly, so that the increase of de-

flection due to the inertia of the bridge is unimportant.

In conclusion, it will be proper to state that this “Addition”

has been written on two or three different occasions, as the reader

will probably have perceived. It was not until a few days after

the reading of the paper itself that I perceived that the equation

(16) was integrable in finite terms, and consequently that the

variables were separable ip (4). I was led to try whether this

might not be the case in consequence of a remarkable numerical

coincidence. This circumstance occasioned the complete remodel-

ling of the paper after the first six articles. I had previously

obtained for the calculation of z for values of x approaching 1, in

which case the series (9) becomes inconvenient, series proceeding

according to ascending powers of 1 — x
}
and involving two arbitrary

constants. The determination of these constants, which at first

appeared to require the numerical calculation of five series, had

been made to depend on that of three only, which were ultimately

geometric series with a ratio equal to

The fact of the integrability of equation (4) in the form given

in Art. 7, to which I had myself been led from the circumstance

above mentioned, has since been communicated to me by Mr
Cooper, Fellow of St John’s College, through Mr Adams, and by
Professors Malmsten and A. F. Svanberg of Upsala through Pro-

fessor Thomson; and I take this opportunity of thanking these

mathematicians for the communication.



[From the Cambridge and Dublin Mathematical Journal
,
Vol. iv. p. 219

{November, 1849)].

Notes on Hydrodynamics.

IV .—On Waves.

The theory of waves has formed the subject of two profound

memoirs by MM. Poisson and Cauchy, in which some of the

highest resources of analysis are employed, and the results deduced

from expressions of great complexity. This circumstance might

naturally lead to the notion that the subject of waves was unap-

proachable by one who was either unable or unwilling to grapple

with mathematical difficulties of a high order. The complexity,

however, of the memoirs alluded to arises from the nature of the

problem which the authors have thought fit to attack, which is the

determination of the motion of a mass of liquid of great depth

when a small portion of the surface has been slightly disturbed in

a given arbitrary manner. But after all it is not such problems

that possess the greatest interest. It is seldom possible to realize

in experiment the conditions assumed in theory respecting the

initial disturbance. Waves are usually produced either by some

sudden disturbing cause, which acts at a particular part of the

fluid in a manner too complicated for calculation, or by the wind

exciting the surface in a manner which cannot be strictly investi-

gated. What chiefly strikes our attention is the propagation of

waves already produced, no matter how : what we feel most desire

to investigate is the mechanism and the laws of such propagation.

But even here it is not every possible motion that may have been

excited that it is either easy or interesting to investigate
;
there

are two classes of waves which appear to be especially worthy of

attention.
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The first consists of those whose length is very great compared

with the depth of the fluid in which they are propagated. To this

class belongs the great tidal wave which, originally derived from

the oceanic oscillations produced by the disturbing forces of the

sun and moon, is propagated along our shores and up our channels.

To this class belongs likewise that sort of wave propagated along a

canal which Mr Eussell has called a solitary wave. As an example

of this kind of wave may be mentioned the wave which, when a

canal boat is stopped, travels along the canal with a velocity

depending, not on the previous velocity of the boat, but merely,

upon the form and depth of the canal.

The second class consists of those waves which Mr Eussell has

called oscillatory. To this class belong the waves produced by the

action of wind on the surface of water, from the ripples on a pool

to the long swell of the Atlantic. By the waves of the sea which

are referred to this class must not be understood the surf which

breaks on shore, but the waves produced in the open sea, and

which, after the breeze that has produced them has subsided,

travel along without breaking or undergoing any material change

of form. The theory of oscillatory waves, or at least of what may
be regarded as the type of oscillatory waves, is sufficiently simple,

although not quite so simple as the theory of long waves.

Theory of Long Waves.

Conceive a long wave to travel along a uniform canal. For the

sake of clear ideas, suppose the wave to consist entirely of an
elevation. Let h be the greatest height of the surface above the

plane of the surface of the fluid at a distance from the wave, where
the fluid is consequently sensibly at rest

;
let X be the length of

the wave, measured suppose from the point where the wave first

becomes sensible to where it ceases to be sensible on the opposite

side of the ridge
;
let b be the breadth, and h the depth of the

canal if it be rectangular, or quantities comparable with the
breadth and depth respectively if the canal be not rectangular.
Then the volume of fluid elevated will be comparable with IXk.
As the wave passes over a given particle, this volume (not how-
ever consisting of the same particles be it observed) will be trans-
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ferred from the one side to the other of the particle in question.

Consequently if we suppose the horizontal motions of the particles

situated in the same vertical plane perpendicular to the length of

the canal to be the same, a supposition which cannot possibly give

the greatest horizontal motion too great, although previously to

investigation it might be supposed to give it too small, the hori-

zontal displacement of any particle will be comparable with bXh/bh

or \Ic/k Hence if A be very great compared with A, the horizontal

displacements and horizontal velocities will be very great compared

with the vertical displacements and vertical velocities. Hence we

may neglect the vertical effective force, and therefore regard the

fluid as in equilibrium, so far as vertical forces are concerned, so

that the pressure at any depth 8 below the actual surface will be

gpB, g being the force of gravity, and p the density of the fluid, the

atmospheric pressure being omitted. It is this circumstance that

makes the theory of long waves so extremely simple. If the canal

be not rectangular, there will be a slight horizontal motion in a

direction perpendicular to the length of the canal
;
but the corre-

sponding effective force may be neglected for the same reason as

the vertical effective force, at least if the breadth of the canal be

not very great compared with its depth, which is supposed to be

the case; and therefore the fluid contained between any two

infinitely close vertical planes drawn perpendicular to the length of

the canal may be considered to be in equilibrium, except in so far

as motion in the direction of the length of the canal is .concerned.

It need hardly be remarked that the investigation which applies

to a rectangular canal will apply to an extended sheet of standing

fluid, provided the motion be in two dimensions.

Let x be measured horizontally in the direction of the length

of the canal
;
and at the time t draw two planes perpendicular to

the axis of x
,
and passing through points whose abscissae are x'

and x' + dx'

.

Then if rj be the elevation of the surface at

any point of the horizontal line in which it is cut by the first

plane, rj + drjjdx'
. dx will be the elevation of the surface where

it is cut by the second plane. Draw a* right line parallel to the

axis of x, and cutting the planes in the points P, P'. Then if

8 be the depth of the line PP' below the surface of the fluid

in equilibrium, the pressures at P, P' will be gp (8 -f 77) and

gp (8 -h rj + drjjdx

'

. dx') respectively
;
and therefore the difference
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:

' %

i

1

1

of pressures will be gp dy/dx'. dx
f
. About the line PP' describe

an infinitely thin cylindrical surface, with its generating lines per-

pendicular to the planes, and let k be the area which it cuts from

either plane
;
and consider the motion of fluid which is bounded

by the cylindrical surface and the two planes. The difference of

the pressures on the two ends is ultimately gp/c dg/dx. dx'
,
and the

mass being ptcdx
y
the accelerating force is g dgfdx. Hence the

effective force is the same for all particles situated in the same

vertical plane perpendicular to the axis of x
;
and since the parti-

cles are supposed to have no sensible motion before the wave

reaches them, it follows that the particles once in a vertical plane

perpendicular to the length of the canal remain in such a vertical

plane throughout the motion.

Let x be the abscissa of any plane of particles in its position of

equilibrium, x 4- £ the common abscissa of the same set of particles

at the time t, so that f and rj are functions of x and t. Then
equating the effective to the impressed accelerating force, we get

df 9
dx'

•(i);

and we have x = x + £ (
2 ).

Thus far the canal has been supposed to be not necessarily

rectangular, nor even uniform, provided that its form and dimen-

sions change very slowly, nor has the motion been supposed to be

necessarily very small. If we adopt the latter supposition, and

neglect the squares of small quantities, we shall get from (1)

and (2)

d%___ dv

df~ 9 dx (
3).

It remains to form the equation of continuity. Suppose the

canal to be uniform and rectangular, and let b be its breadth and h

its depth. Consider the portion of fluid contained between two
vertical planes whose abscissse in the position of equilibrium are x
and x + dx. The volume of this portion is expressed by bh dx. At
the time t the abscissse of the bounding planes of particles are

oo + £ and x -f £ + (1 + d%/dx) dx
;
the depth of the fluid contained

between these planes is h -f r)
• and therefore the expression for

the volume is b (h 4- rj) (1 4- d%/dx) dx. Equating the two expres-

i

1
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sions for the volume, dividing by bclx
y
and neglecting the product

of the two small quantities, we get

+ <*>*

Eliminating £ between (3) and (4), we get

Fr,

cl?
(
5
)

The complete integral of this equation is

V =/{« -VW t) + F {x + sj{gli) t) (6),

where f, F denote two arbitrary functions. This integral evidently

represents two waves travelling, one in the positive, and the other

in the negative direction, with a velocity equal to V(gh), or to

that acquired by a heavy body in falling through a space equal

to half tiie depth of the fluid. It may be remarked that the

velocity of propagation is independent of the density of the

fluid.

It is needless to consider the determination of the arbitrary

•functions /, F by means of the initial values of 77 and dr\jdt
y
sup-

posed to be given, or the reflection of a wave when the canal is

stopped by a vertical barrier, since these investigations are pre-

cisely the same as in the case of sound, or in that of a vibrating

* This equation is in fact a second integral of the ordinary equation of con-

tinuity, corrected so as to suit the particular case of motion which is under con-

sideration. For motion in two dimensions the latter equation is

du

dx

and denoting by if the vertical displacement of any particle, wo have

die dW
u
~dt 9

V=
dt *

Substituting in {a), and integrating with respect to £, we get

dx dy y)

ip (x, y) denoting an arbitrary function of xy y, that is, a quantity which may vary

from one particle to another, but is independent of the time. To determine ^ we
must observe that when any particle is not involved in the wave 77'= 0 , and £ does

not vary in passing from one particle to another, and therefore 1\p(x, y) = 0. Inte-

grating equation (b) with respect to y from y — 0 to y= h + r)
t
observing that £ is

independent of y ,
and that the limits of 7/ are 0 and % and neglecting 77 d-^dx,

which is a small quantity of the second order, we get the equation in the

text.

S. II. 15
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string. The only thing peculiar to the present problem consists in

the determination of the motion of the individual particles.

It is evident that the particles move in vertical planes parallel

to the length of the canal. Consider an elementary column of

fluid contained between two such planes infinitely close to each

other, and two vertical planes, also infinitely close to each other,

perpendicular to the length of the canal. By what has been

already shewn, this column of fluid will remain throughout the

motion a vertical column on a rectangular base
;
and since there

can be no vertical motion at the bottom of the canal, it is evident

that the vertical displacements of the several particles in the

column will be proportional to their heights above the base. Hence

it will be sufficient to determine the motion of a particle at the

surface
; when the motion of a particle at a given depth will be

found by diminishing in a given ratio the vertical displacement of

the superficial particle immediately above it, without altering the

horizontal displacement.

The motion of a particle at the surface is defined by the values

of 7) and f. The former is given by (6), where the functions J] F
are now supposed known, and the latter will be obtained from (4)

by integration. Consider the case in which a single wave con-

sisting of an elevation is travelling in the positive direction
;

let

\ be the length of the wave, and suppose the origin taken at the

posterior extremity of the wave in the position it occupies when
t = 0 : then we may suppress the second function in (6), and

we shall have f[x)
— 0 from x= — go to x= 0, and from x = X to

x = -f oo
,
and f(x) will be positive from x = 0 to x = X. Let

c = *J(gh) (7),

so that c is the velocity of propagation, and let the position of

equilibrium of a particle be considered to be that which it occu-

pies before the wave reaches it, so that f vanishes for x = -f oo .

Then we have from (4) and (6)

Consider a particle situated in front of the wave when t = 0,

so that x > X. Since f (pc) = 0 when x > X, we shall have

f (pc — ot) = 0
,
until ct=x— \. Consequently from (6) and (8)

there will be no motion until t = x — \/c, when the motion will

commence. Suppose now that a very small portion only of the
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wave, of length s
,
has passed over the particle considered. Then

x—ct=X — s; and we have from (6) and (8)

v =f(\- s), f = Jr J_/(
x -s)ds= * jf(X — s) ds :

for since f(x) vanishes when x > X, we may replace the limits

— go and ^ by 0 and s. Since [ f(X — s) ds is equal to s mul-
J o

tiplied by the mean value oif(X-s) from 0 to 6*, and this mean

value is comparable with f {X — s), it follows that £ is at first very

small compared with 77. Hence the particle begins to move verti-

cally; and since tj is positive the motion takes place upwards.

As the wave advances, £ becomes sensible, and goes on increasing

positively. Hence the particle moves forwards as well as upwards.

When the ridge of the waves reaches the particle, 77 is a maxi-

mum
;

the upward motion ceases, but it follows from (8) that £ is

then increasing most rapidly, so that the horizontal velocity is

a maximum. As the wave still proceeds, 77 begins to decrease,

and £ to increase less rapidly. Hence the particle begins to

descend, and at the same time its onward velocity is checked.

As the wave leaves the particle, it may be shewn just as before

that the final motion takes place vertically downwards. When the

wave has passed, rj = 0, so that the particle is at the same height

from the bottom as at first
;
but f is a positive constant, equal to

1 f
A 1 f

A

hJ/« dx’ or t0
bhj o

dx>

that is, to the volume elevated divided by the area of the section

of the canal. Hence the particle is finally deposited in advance of

its initial position by the space just named.

If the wave consists of a single depression, instead of a single

elevation, everything is the same as before, except that the parti-

cle is depressed and then raised to its original height, in place of

being first raised and then depressed, and that it is moved back-

wards, or in a direction contrary to that of propagation, instead of

being moved forwards.

These results of theory with reference to the motions of the in-

dividual particles may be compared with Mr Russell's experiments

described at page 342 of his second report on waves *.

* Report of the 14th meeting of the British Association. Mr RusseH’s first

report is contained in the Report of the 7th meeting.

15—2
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In the preceding investigation the canal has been supposed

rectangular. A very trifling modification, however, of the pre-

ceding process will enable us to find the velocity of propagation in

a uniform canal, the section of which is of any arbitrary contour.

In fact, the dynamical equation (3) will remain the same as before;

the equation of continuity alone will have to be altered. Let A be

the area of a section of the canal, b the breadth at the surface of

the fluid
;
and consider the mass of fluid contained between two

vertical planes whose abscissae in the position of equilibrium are

x and x+ dx, and which therefore has for its volume Adx. At the

time t, the distance between the bounding planes of particles is

(1 -b d£/dx) dx, and the area of a section of the fluid is A + fo)

nearly, so that the volume is

(.A +br})^I f dx, or ^A -f- brj + A^j
dx

nearly. Equating the two expressions for the volume, we get

xg+ s,-o.

Comparing this equation with (4), we see that it is only

necessary to write A/b for h
;

so that if c be the velocity of

propagation,

-7(t) <°>-

The formula (9) of course includes (7) as a particular case.

The latter was given long ago by Lagrange* : the more compre-
hensive formula (9) was first given by Prof. Kellandf, though at

the same time or rather earlier it was discovered independently

* Memoirs, 1786, p. 192. In this memoir Lagrange has obtained the ,

velocity of propagation by very simple reasoning. Laplace had a little earlier (Mim.
de VAcademic for 1776, p. 542) given the expression (see equation (20) of this note)
for the velocity of propagation of oscillatory waves, which when h is very small
compared with X reduces itself to Lagrange’s formula, hut had made an unwarrant-
able extension of the application of the formula. In the MScaniqw Analytique
Lagrange has obtained analytically the expression (7) for the velocity of propagation
when the depth is small, whether the motion take place in two or three dimensions,
by assuming the result of an investigation relating to sound.

For a full account of the various theoretical investigations in the theory of
waves, which had been made at the date of publication, as well as for a number of
interesting experiments, the reader is referred to a work by the brothers Weber,
entitled Wellenlehre auf Experimente gegriindet

,
Leipzig, 1825.

f Transaction# of the Hoyal Society of Edinburgh, Yoi, xiv. pp. 524, 530.
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by Green*, in the particular case of a triangular canal. These

formulae agree very well with experiment, when the height of the

waves is small, which has been supposed to be the case in the

previous investigation, as may be seen from Mr Russell’s reports. A
table containing a comparison of theory and experiment in the

case of a triangular canal is given in Green’s paper. In this table

the mean error is only about 1/G0th of the whole velocity.

As the object of this note is merely to give the simplest cases

of wave motion, the reader is referred to Mr Airy’s treatise on tides

and waves for the effect produced by a slow variation in the dimen-

sions of the canal on the length and height of the wavef, as well

as for the effect of the finite height of the wave on the velocity of

propagation. With respect to the latter subject, however, it must

be observed that in the case of a solitary wave artificially excited

in a canal it does not appear to be sufficient to regard the wave as

infinitely long when we are investigating the correction for the

height; it appears to be necessary to take account of the finite

length, as well as finite height of the wave.

Theory of Oscillatory Waves.

In the preceding investigation, the general equations of hydro-

dynamics have not been employed, but the results have been

obtained by referring directly to first principles. It will now be

convenient to employ the general equations. The problem which

it is here proposed to consider is the following.

The surface of a mass of fluid of great depth is agitated by a

series of waves, which are such that the motion takes place in two

dimensions. The motion is supposed to be small, and the squares

of small quantities are to be neglected. The motion of each

particle being periodic, and expressed, so far as the time is con-

cerned, by a circular function of given period, it is required to

determine all the circumstance of the motion of the fluid. The
case in which the depth is finite and uniform will be considered

afterwards.

* Transaction# of the Cambridge Philosophical Society
,
Vol. vn. p. 87,

. t Encycloxmdia Metrojpolitana. Art. 200 of the treatise.
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It must be observed tbat the supposition of the periodicity of

the motion is not, like the hypothesis of parallel sections, a mere

arbitrary hypothesis introduced in addition to our general equa-

tions, which, whether we can manage them or not, are sufficient

for the complete determination of the motion in any given case.

On the contrary, it will be justified by the result, by enabling us

to satisfy all the necessary equations; so that it is used merely to

define, and select from the general class of possible motions, that

particular kind of motion which we please to contemplate.

Let the vertical plane of motion be taken for the plane of xy.

Let x be measured horizontally, and y vertically upwards from the

mean surface of the fluid. If a, b be the co-ordinates of any parti-

cle in its mean position, the co-ordinates of the same particle at

the time t will be a -f Judt, b + fvdt, respectively. Since the

squares of small quantities are omitted, it is immaterial whether

we conceive u and v to be expressed in terms of a
,
b

,
t
,
or in terms

of x, y, t; and, on the latter supposition, we may consider x and y
as constant in the integration with respect to t. Since the varia-

ble terms in the expressions for the co-ordinates are supposed to

contain t under the form sin nt or cos nt, the same must be the case

with u and v. We may therefore assume

u = u
x
sin nt + u

2
cos nt, v = v

l
sin nt + v

2
cos nt,

where -uv u
% , vv v

2
are functions of x and y without t. Substituting

these values of u and v in the general equations of motion, neglect-

ing the squares of small quantities, and observing that the only

impressed force acting on the fluid is that of gravity, we get

1 dp
x

'

'p dx
= “ nu

i
cos nu

2
81n

1 dp '

~ j =—g~ nv, cos nt + nv„ sin n

t

p dy * 1 *

and the equation of continuity becomes

@ + co* n<- °-
<u >-

Eliminating p by differentiation from the two equations (10),

we get

(10 ),
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and in order that this equation .may be satisfied, we must have
separately

du
t

dv
x __ n

dy ~ dx ~ ’

dy dx
.(13).

The first of these equations requires that u
x
dx 4* v

x
dy be an

exact differential d$
x

<>
and is satisfied merely by this supposition.

Similarly the second requires that u
2
dx + v

2
dy be an exact differ-

ential dcj)r The functions <p
x , <f>2

may be supposed not to contain

ty provided that in integrating equations (10) we express explicitly

an arbitrary function of t instead of an arbitrary constant. In

order to satisfy (11) we must equate separately to zero the coeffi-

cients of sin nt and cos nt. Expressing n
l9

vtJ n
2 ,

v
a

in terms of

</>v 4>2
in the resulting equations, we get

S+SH (
i4)>

with a similar equation for <p2
. Integrating the value of dy

given by (10), we get

P = —gy — n<tf>
x
cos nt + n<j>

2
sin nt + ty(t) (15),

It remains to form the equation of condition which has to

be satisfied at the free surface. If we suppose the atmospheric

pressure not to be included in p, we shall have p = 0 at the free

surface
;
and we must have at the same time (Note II.)

dp

dt

dp dp
-w f--+v-f = 0.

dx dy
(16).

The second term in this equation is of the second order, and

in the third we may put for dp/dy its approximate value — gp.

Consequently at the free surface, which is defined by the

equation

gy + n<f>x
cos nt - n<f>2

sin nt - ty (t) = 0 (17),

we must have

n*(f>l
sin nt + ??

2
</>2

cos nt -f ty' (t) — g sin nt 4- cos

and we have the further condition that the motion shall vanish

at an infinite depth. Since the value of y given by (17) is a

small quantity of the first order, it will be sufficient after differen-

tiation to put y = 0 in (18).

sntj — 0 (18)

:
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' Equations (18), (14), and the corresponding equation for <£a

shew that the functions <j>v </>2
are independent of each other;

and (15), (17) shew that the pressure at any point, and the

ordinate of the free surface are composed of the sums of the parts

due to these two functions respectively. Consequently we may

temporarily suppress one of the functions <^2,
which may be easily

restored in the end by writing 1 4 7r/2ra for t, and changing the

arbitrary constants.

Equation (14) may be satisfied in the most general way by

an infinite number of particular solutions of the form Aem'x+mv
}

where any one of the three constants A ,
m', m may be positive

or negative, real or imaginary, and m' 9
m are connected by the

equation m 2 4m2 = 0.* Now m cannot be wholly real, nor partly

real and partly imaginary, since in that case the corresponding

particular solution would become infinite either for x = — go or

for x — 4 oo
,
whereas the fluid is supposed to extend indefinitely

in the direction of x
}
and the expressions for the velocity, &c.

must not become infinite for any point of space occupied by the

fluid. Hence m must be wholly imaginary, and therefore m
wholly real. Moreover m must be positive, since otherwise the

expression considered would become infinite for y = — oo , The
equation connecting m and m gives rri — 4 m V( — 1). Uniting

in one the two corresponding solutions with their different arbi-

trary constants, we have for the most general particular solution

which we are at liberty to take (A€m^~x>+ emy
y which

becomes, on replacing the imaginary exponentials by circular

functions, and changing the* arbitrary constants,

(A sin mx 4 B cos mx) emy.

Hence we must have

= S (A sin mx+ I? cos mx) (1.9),

the sign 2 denoting that we may take any number of positive

values of m with the corresponding values of A and B.

Substituting! now in (18), supposed to be deprived of the

function <f>
2 , the value of <j>

l
given by (19), and putting y = 0 after

differentiation, we have

sin nt S (n
2 — mg) (A sin mx 4 B cos mx) 4 (t) ~ 0.

* Bee Poisson, Trait€ de Mecanique
, Torn. n. p. 347, or TMorie de la Chaleur

,

Ckap. v.
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Since no two terms such as A sin mx or B cos mx can destroy

each other, or unite with the term yjr' (t), we must have sepa-

rately (t) = 0, and

v? — mg = 0 (20).

The former of these equations gives ^ (t) = lc
,
where k is a

constant; but (17) shews that the mean value of the ordinate

y of the free surface is k/g, inasmuch as <p 1
and cj)

2
consist of

circular functions so far as x is concerned, anil therefore we must

have k — 0, since we have supposed the origin of co-ordinates to

be situated in the mean surface of the fluid. The latter equation

restricts (19) to one particular value of m.

To obtain it will be sufficient to take the expression for

<f>t
with new arbitrary constants. If we put </> for

(f>x
sin nt+ cos nt, so that <£ = J(udx + vdy),

we see that <j> consists of four terms, each consisting of the pro-

duct of an arbitrary constant, a sino or cosine of nt, a sine or

cosine of mx and of the same function em;/ of y. By replacing

the products of the circular functions by sines or cosines of sums

or differences, and changing the arbitrary constants, we shall get

four terms multiplied by arbitrary constants, and involving sines

and cosines of mx — nt and of mx -f nt. The terms involving

mx — nt will represent a disturbance travelling in the positive

direction, and those involving mx 4- nt a disturbance travelling in

the negative direction. If we wish to consider only the disturb-

ance which travels in the positive direction, we must suppress the

terms involving mx -f nt, and we shall then have got only two

terms left, involving respectively sin (mx — ni) and cos (mx — nt).

One of these terms, whichever we please, may be got rid of by

altering the origin of x ;
and we may therefore take

<f)
= A sin

(
[mx — 7it) tmy (21)

;

and <j> determines, by its partial differential coefficients with

respect to x and y, the horizontal and vertical components of the

velocity at any point. We have from (21), and the definitions of

4>V

<j> t
= — A cos mx . emj, </>2 = A sin mx . emy.
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Substituting in (15) and (17), putting ^ (t) = 0, and replacing

y by 0 in the second and third terms of (17), we get

P — g (- y) -f- nA cos (mx — nt) em2/ . . .
.

, (22),

which gives the pressure at any point, and

y = cos [mx — nt) (23)*,

which gives the equation to the free surface at any instant.

If A be the length of a wave, T its period, c the velocity of

propagation, we have m = 27r/A, n = 2tt/ 1) n = cm
;
and therefore

from (20)

'-A©
Hence the velocity of propagation varies directly, and the period

of the wave inversely, as the square root of the wave’s length.

Equation (23) shews that a section of the surface at any instant

is the curve of sines.

It may be remarked that in consequence of the form of <£>

equation (18) is satisfied, not merely for ?/= 0, but for any value

of y\ and therefore (16) is satisfied, not merely at the free surface,

but throughout the mass. Hence the pressure experienced by a

given particle is constant throughout the motion. This is not true

when the depth is finite, as may be seen from the value of <j>

adapted to that case, which will be given presently; but it may be

shewn to be true when the depth is infinite, whether the motion

. take place in two, or three dimensions, and whether it be regular

or irregular, provided it be small, and be such that ndx -f vd

y

+ wd.z

is an exact differential.

It will be interesting to determine the motions of the indi-

vidual particles. Let x 4- y -f rj be the co-ordinates of the par-

ticle whose mean position has for co-ordinates x, y. Then we have

d£
__ _ dcf> dr)

__ __
d(p

dt
~ U ~ dx ’ dt~

V
~di/’

and in the values of u, v we may take x, y to denote the actual

* Equations (22), (23) may be got at once from the equations

P
P

d<f>
*
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co-ordinates of any particle or their mean values indifferently, on
account of the smallness of the motion. Hence we get from (21)
after differentiation and integration

£ = — sin (mx - nt) e
my

,
tj =

m~ cos (mx — nt)e
my

. . . (25).
71 71 ' \ /

Hence the particles describe circles about their mean places, with a
uniform angular motion. Since rj is a maximum at the same time
with y in (23), and dfydt is then positive, any particle is in its

highest position when the crest of the wave is passing over it, and
is then moving horizontally forwards, that is, in the direction of

propagation. Similarly any particle is in its lowest position when
the middle of the trough is passing over it, and it is then moving
horizontally backwards. The radius of the circle described is equal

to mA/n . €
,n

", and it therefore decreases in geometric progression as

the depth of the particle considered increases in arithmetic. The
rate of decrease is such that at a depth equal to X the displace-

ment is to the displacement at the surface as e"
27r to 1, or as 1 to

535 nearly.

If the depth of the fluid he finite, the preceding solution may
of course be applied without sensible error, provided e

my he insensi-

ble for a negative value of y equal to the depth of the fluid. This

will be equally true whether the bottom be regular or irregular,

provided that in the latter case we consider the depth to be repre-

sented by the least actual depth.

Let us now suppose the depth of the fluid finite and uniform.

Let h be the mean depth of the fluid, that is, its depth as unaffected

by the waves. It will be convenient to measure y from the bottom

rather than from the mean surface. Consequently we must put

if = h, instead of y = 0, in the values of </>
x , <£2 , and their differential

coefficients, in (17) and (18). The only essential change in the

equations of condition of the problem is, that the condition that

the motion shall vanish at an infinite depth is replaced by the

condition that the fluid shall not penetrate into, or separate from

the bottom, a condition which is expressed by the equation

= 0 when y = 0 (26)

.

dy

Everything is the same as in the preceding investigation till

we come to the selection of a particular integral of (14). As before,
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y must appear in an exponential, and x under a circular function

;

but both exponentials must now be retained. Hence the only

particular solution which we are at liberty to take is of the form

Aemy cos mx+ Bemy sin mx 4- Ce~
my

cos mx 4- De~my
sin mx,

or, which is the same thing, the coefficients only being altered,

[e
my

4- e~
my

)
(A cos mx + B sin mx)

_j_
(
6
m^ _ (

C

cos mx 4- D sin mx).

Now (26) must be satisfied by (j>t
and <£2

separately. Substituting

then in this equation the value of
<f>1

which is made up of an infi-

nite number of particular values of the above form, we see that we

must have for each value of m in particular G= 0, D = 0 ; so that

<j>l
= '% (e

M2/
H- e~

mv
)
(A cos mx 4* B sin mx).

Substituting in equation (18), in which </>2
is supposed to be

suppressed, and y put equal to h after differentiation, we get

(€
mh

4- e"**) - mg (e
mh - e

mh
) = 0 (27),

and yfr' (t) — 0, which gives \[r (t) = h. The equation (17) shews

that this constant h must be equal to h, which is the mean value

of y at the surface. It is easy to prove that equation (27), in

which m is regarded as the unknown quantity, has one and but

one positive root. For, putting mh = yu, and denoting by v the

function of y defined by the equation

v (eM 4- e“M
)
= fL (?• - €~>)

;
(28),

we get by taking logarithms and differentiating

1 dv_
__

1 4- ^ - €~IX

V dyx jX 6^ — e
-
^ 4- €~h

*

Now the right-hand member of this equation is evidently positive

when y, is positive; and since v is also positive, as appears from

(28), it follows that dv/dy is positive; and therefore jx and v in-

crease together. Now (28) shews that v passes from 0 to cc as fx

passes from 0 to oo
,
and therefore for* one and but one positive

value of y, v is equal to the given quantity nVi/g, which proves the

theorem enunciated. Hence as before the most general value of <

p

corresponds to two series of waves, of determinate length, which

are propagated, one in the positive, and the other in the negative
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direction. If c be the velocity of propagation, we get from (27),

since n = cm = c . %r/X,
r

g\ 1 — e
-47r7i/v

|

l"Z7T iT e“4n/t/xj

(2D).

If we consider only the series which is propagated in the posi-

tive direction, we may take for the same reason as before

(j> = A (e
my + e~

my
)
sin [mx — nt) (30)

;

which gives

£=g (h - y) + nA (f* + e’
w

)
cos (mx - nt) (31),

P

and for the equation to the free surface

g (y
— h) = nA (e

w* + e~
v,h

)
cos (mx — nt) (32).

Equations (21), (22), (23) may be got from (30), (31), (32) by

writing y + h for y, Ae~mh for A
,
and then making h infinite.

When X is very small compared with A, the formula (2D) reduces

itself to (24) : when on the contrary X is very great it reduces it-

self to (7). It should be observed however that this mode of prov-

ing equation (7) for very long waves supposes a section of the

surface of the fluid to be the curve of sines, whereas the equation

has been already obtained independently of any such restriction.

The motion of the individual particles may be determined, just

as before, from (30;. We get

£= - (e
mv + e

nu
) sin (mx - nt),

(e
mv - e

mv
) cos (mx - nt) (33).

Hence the particles describe elliptic orbits, the major axes of

which are horizontal, and the motion in the ellipses is the same

as in the case of a body describing an ellipse under the action of a

force tending to the centre. The ratio of the minor to the major

axis is that of 1 — e~
lm to 1 -f- e~

2mv
1
which diminishes from the

surface downwards, and vanishes at the bottom, where the ellipses

pass into right lines.

The ratio of the horizontal displacement at the depth h — y
to that at the surface is equal to the ratio of e

mv + e to e
mh + €~nh

.

The ratio of the vertical displacements is that of e
mv ~e~mv to

e
m7t _ €

-»* The former 0f these ratios is greater, and the latter
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less than that of e"
,n(^ to 1. Hence, for a given length of wave,

the horizontal displacements decrease less, and the vertical dis-

placements more rapidly from the surface downwards when the

depth of the fluid is finite, than when it is infinitely great.

In a paper “ On the Theory of Oscillatory Waves*” I have

considered these waves as mathematically defined by the character

of uniform propagation in a mass of fluid otherwise at rest, so that

the waves are such as could be propagated into a portion of fluid

which had no previous motion, or excited in such a portion by

means of forces applied to the surface. It follows from the latter

character, by virtue of the theorem proved in Note IV, that

udx + vdy is an exact differential. This definition is equally

applicable whether the motion be or be not very small
;
but in the

present note I have supposed the species of wave considered to be

defined by the character of periodicity, which perhaps forms a

somewhat simpler definition when the motion is small. In the

paper just mentioned I have proceeded to a second approximation,

and in the particular case of an infinite depth to a third approxima-

tion. The most interesting result, perhaps, of the second approxi-

mation is, that the ridges are steeper and narrower than the

troughs, a character of these waves which must have struck every-

body who has been in the habit of watching the waves of the

sea, or even the ripples on a pool or canal. It appears also from

the second approximation that in addition to their oscillatory

motion the particles have a progressive motion in the direction of

propagation, which decreases rapidly from the surface downwards.

The factor expressing the rate of decrease in the case in which

the fluid is very deep is e~
2w2

', y being the depth of the particle

considered below the surface. The velocity of propagation is

the same as to a first approximation, as might have been seen

a priori
,
because changing the sign of the coefficient denoted by

A in equations (21) and (30) comes to the same thing as shifting

the origin of x through a space equal to JA, which does not alter

the physical circumstances of the motion
;
so that the expression

for the velocity of propagation cannot contain any odd powers of

A. The third approximation in the case of an infinite depth gives

an increase in the velocity of propagation depending upon the

height of the waves. The velocity is found to be equal to

* Cambridge Philosophical Transactions
, Vol. vra. p. 441. [Ante, VoL i. p. 197.]
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c
0 (1 + 2ttV/\2

), c
0
being the velocity given by (24), and a the

height of the waves above the mean surface, or rather the coeffi-

cient of the first term in the equation to the surface.

A comparison of theory and observation with regard to the

velocity of propagation of waves of this last sort may be seen at

pages 271 and 274 of Mr Russell’s second report. The following

table gives a comparison between theory and experiment in the

case of some observations made by Capt. Stanley, R.N. The

observations were communicated to the British Association at its

late meeting at Swansea*.

In the following table

A is the length of a wave, in fathoms

;

B is the velocity of propagation deduced from the observations,

expressed in knots per hour

;

C is the velocity given by the formula (24), the observations

being no doubt made in deep water

;

I) is the difference between the numbers given in columns

B and C.

In calculating the numbers in table C, I have taken g = 32*2

feet, and expressed the velocity in knots of 1000 fathoms or 6000

feet-J*.

A B O I)

55 27‘0 24-7 2*3

43 24*5 21*8 2*7

50 24*0 23*5 0*5

35 to 40 22*1 20 '4 1*7

33 22*1 19*1 3*0

57 20*2 25*1 1*1

35 22*0 19*7 2*3

The mean of the numbers in column D is 1*94, nearly, which

is about the one-eleventh if the mean of those in column (7. The

quantity 1*94 appears to be less than the most probable error of

any one observation, judging by the details of the experiments

;

but as all the errors lie in one direction, it is probable that the

* Beporfc for 1848, Part ii. p. 88.

f I have taken a knot to be 1000 fathoms rather than 2040 yards, because the

former value appears to have been used in calculating the numbers in column B .
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formula (24) gives a velocity a little too small to agree with obser-

vations under the circumstances of the experiments. The height

of the waves from crest to trough is given in experiments No. 1,

2, 3, 6, 7, by numbers of feet ranging from 17 to 22. I have

calculated the theoretical correction for the velocity of propagation

depending upon the height of the waves, and found it to he *5 or

*6 of a knot, by which the numbers in column G ought to be

increased. But on the other hand, according to theory, the par-

ticles at the surface have a progressive motion of twice that

amount
;
so that if the ship’s velocity, as measured by the log-

line, were the velocity relatively to the surface of the water, her

velocity would be under-estimated to the amount of 1 or 1*2 knot,

which would have to be added to the numbers in column B
,
or

which is the same subtracted from those in column C,
in order to

compare theory and experiment
;
so that on the whole *5 or *0

would have to be subtracted from the numbers in column C.

But on account of the depth to which the ship sinks in the sea,

and the rapid decrease of the factor e^mv from the surface down-

wards, the correction 1 or 1*2 for the “ heave of the sea*” would

be too great; and therefore, on the whole, the numbers in column

G may be allowed to stand. If the numbers given in Capt.

Stanley’s column, headed “ Speed of Ship” already contain some

such correction, the numbers in column C must be increased, and

therefore those in column I) diminished, by *5 or *6.

It has been supposed in the theoretical investigation that

the surface of the fluid was subject to a uniform pressure. But in

the experiments the wind was blowing strong enough to propel

the ship at the rate of from 5 to 7*8 knots an hour. There is

nothing improbable in the supposition that the wind might have

slightly increased the velocity of propagation of the waves.

There is one other instance of wave motion which may be

noticed before we conclude. Suppose that two series of oscillatory

waves, of equal magnitude, are propagated in opposite directions.

The value of $ which belongs to the compound motion will be

(e
mv

-|- e~
my

)
[A cos (mx — nt) 4- A cos {mx -f nt 4- a)],

* I have teen told by a naval friend that an allowance for the “heave of

the sea” is sometimes actually made. As well as I recollect, this allowance

might have been about 10 knots a day for waves of the magnitude of those here

considered.



ON WAVES. 241

the squares of small quantities being neglected, as throughout this
note. Since

’ cos (mx - nt) + cos (mx -but -f a) = 2 cos (mx 4- Ja) cos (nt + Ja),

we get by writing for 4, and altering the origins of x and t, so

as to get rid of a,

<j> = 4 (e
wy

4- e“
wy

)
cos ma; . cos nt (34).

This is in fact one of the elementary forms already considered,

from which two series of progressive oscillatory waves were derived

by merely replacing products of sines and cosines by sums and
differences. Any one of these four elementary forms corresponds

tp the same kind of motion as any other, since any two may be
derived from each other by merely altering the origins of x and t;

and therefore it will be sufficient to consider that which has

just been written. We get from (34)

u~—mA (e
my + e™*) sin mx cos nfl

v = mA
(
e
mv — e

-”1

*) cos mx cos nt } ^ '*

We have also for the equation to the free surface

(rf»* + e~
mv

) cos mx sin nt (36).
9

Equations (35) shew that for an infinite series of planes for

which mx = 0, = ± 7r, — ± 2tt, &c., i. e. x = 0, = ± £A, = + A, &c.,

there is no horizontal motion, whatever be the value of t

;

and for

planes midway between these the motion is entirely horizontal.

When t = 0, (36) shews that the surface is horizontal; the parti-

cles are then moving with their greatest velocity. As t increases,

the surface becomes elevated (4 being supposed positive) from

x = 0 to x as -JA, and depressed from x = £A to x = |A, which suffi-

ciently defines the form of the whole, since the planes whose

equations are x = 0, x = |A, are planes of symmetry. When
nt = J77-, the elevation or depression is the greatest

;
the whole

fluid is then for an instant at rest, after which the direction of

motion of each particle is reversed. When nt becomes equal to 7r,

the surface again becomes horizontal
;
but the direction of each

particle’s motion is just the reverse of what it was at first, the

magnitude of the velocity being the same. The previous motion

of the fluid is now repeated in a reverse direction, those por-

tions of the surface which were elevated becoming depressed, and

vice versA. When nt = 2ir, everything is the same as at first.

16a 11.
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Equations (35) shew that each particle moves backwards and

forwards in a right line.

This sort of wave, or rather oscillation, may be seen formed

more or less perfectly when a series of progressive oscillatory waves

is incident perpendicularly on a vertical wall. By means of this

kind of wave the reader may if he pleases make experiments

for himself on the velocity of propagation of small oscillatory

waves, without trouble or expense. It will be sufficient to pour

some water into a rectangular box, and, first allowing the water

to come to rest, to set it in motion by tilting the box, turning

it round one edge. The oscillations may he conveniently counted

by watching the bright spot on the wall or ceiling occasioned

by the light of the sun reflected from the surface of the water,

care being taken not to have the motion too great. The time

of oscillation from rest to rest is half the period of a wave, and

the length of the interior edge parallel to the plane of motion is

half the length of a wave; and therefore the velocity of propaga-

tion will be got by dividing the length of the edge by the time of

oscillation. This velocity is then to be compared with the for-

mula (29).



[From the Transactions of the Cambridge Philosophical Society,

Yol. ix. p. 1.]

T. On the Dynamical Theory of Diffraction,

[Read November 26, 1849.]

When light is incident on a small aperture in a screen, the

ixroination at any point in front of the screen is determined, on

o undulatory theory, in the following manner. The incident

wes are conceived to he broken up on arriving at the aperture

;

eli element of the aperture is considered as the centre of an

Bixxentary disturbance, which diverges spherically in all direc-

>ns, with an intensity which does not vary rapidly from one

reaction to another in the neighbourhood of the normal to the

ixxxary wave
;

and the disturbance at any point is found .by

Icing the aggregate of the disturbances due to all the secondary

ives, the phase of vibration of each being retarded by a quantity

^responding to the distance from its centre to the point where

o disturbance is sought. The square of the coefficient of vibra-

»n is then taken as a measure of the intensity of illumination.

$fc. us consider for a moment the hypotheses on which this pro-

as rests. In the first place, it is no hypothesis that we may

Deceive the waves broken up on arriving at the aperture : it is

necessary consequence of the dynamical principle of the superpo-

ion of small motions
;
and if this principle be inapplicable to

jilt, the undulatory theory 'is upset from its very foundations,

re mathematical resolution of a wave, or any portion of a wave,

to elementary disturbances must not be confounded with a phy-

saJL Toreaking up of the wave, with which it has no more to do

the division of a rod of variable density into differential

16—2
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elements, for the purpose of finding its centre of gravity, has to do

"with, breaking the rod in pieces. It is a hypothesis that we may
find the disturbance in front of the aperture by merely taking the

aggregate of the disturbances due to all the secondary waves, each

secondary wave proceeding as if the screen were away ;
in other

words, that the effect of the screen is merely to stop a certain

portion of the incident light. This hypothesis, exceedingly pro-

bable a priori
,
when we are only concerned with points at no

great distance from the normal to the primary wave, is confirmed

by experiment, which shews that the same appearances are pre-

sented, with a given aperture, whatever be the nature of the screen

in which the aperture is pierced, whether, for example, it consist

of paper or of foil, whether a small aperture be divided by a hair

or by a wire of equal thickness. It is a hypothesis, again, that

the intensity in a secondary wave is nearly constant, at a given

distance from the centre, in different directions very near the

normal to the primary wave; but it seems to me almost impossible

to conceive a mechanical theory which would not lead to this

result. It is evident that the difference of phase of the various

secondary waves which agitate a given point must be determined

by the difference of their radii; and if it should afterwards be

found necessary to add a constant to all the phases the results will

not be at all affected. Lastly, good reasons may be assigned why
the intensity should be measured by the square of the coefficient

of vibration
;
but it is not necessary here to enter into them.

In this way we are able to calculate the relative intensities at

different points of a diffraction pattern. It may be regarded as

established, that the coefficient of vibration in a secondary wave

varies, in a given direction, inversely as the radius, and conse-

quently, we are able to calculate the relative intensities at differ-

ent distances from the aperture. To complete this part of the

subject, it is requisite to know the absolute intensity. Now it has

been shewn that the absolute intensity will be obtained by taking

the reciprocal of the wave length for the quantity by which to

multiply the product of a differential element of the area of the

aperture, the reciprocal of the radius, and the circular function

expressing the phase. It appears at the same time that the phase

of vibration of each secondary wave must be accelerated by a

quarter of an undulation. In the investigations alluded to, it is

supposed that the law of disturbance in a secondary wave is the
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same in all directions
;
but this will not affect the result, provided

the solution be restricted to the neighbourhood of the normal to

the primary wave, to which indeed alone the reasoning is appli-

cable
;
and the solution so restricted is sufficient to meet all

ordinary cases of diffraction.

Now the object of the first part of the following paper is, to

determine, on purely dynamical principles, the law of disturbance

in a secondary wave, and that, not merely in the neighbourhood of

the normal to the primary wave, but in all directions. The oc-

currence of the reciprocal of the radius in the coefficient, the

acceleration of a quarter of an undulation, and the absolute value

of the coefficient in the neighbourhood of the normal to the

primary wave, will thus appear as particular results of the general

formula.

Before attacking the problem dynamically, it is of course

necessary to make some supposition respecting the nature of that

medium, or ether,
the vibrations of which constitute light, accord-

ing to the theory of undulations. Now, if we adopt the theory of

transverse vibrations—and certainly, if the simplicity of a theory

wbiph conducts us through a multitude of curious and complicated

phenomena, like a thread through a labyrinth, be considered to

carry the stamp of truth, the claims of the theory of transverse

vibrations seem but little short of those of the theory of universal

gravitation—if, I say, we adopt this theory, we are obliged to

suppose the existence of a tangential force in the ether, called into

play by the continuous sliding of one layer, or film, of the medium
over another. In consequence of the existence of this force, the

ether must behave, so far as regards the luminous vibrations, like

an elastic solid. We have no occasion to speculate as to the cause

of this tangential force, nor to assume either that the ether does,

or that it does not, consist of distinct particles
;
nor are we directly

called on to consider in what manner the ether behaves with

respect to the motion of solid bodies, such as the earth and

planets.

Accordingly, I have assumed, as applicable to the luminiferous

ether in vacuum, the known equations of motion of an elastic

medium, such as an elastic solid. These equations contain two

arbitrary constants, depending upon the nature of the medium.

The argument which Green has employed to shew that the lumi-

niferous ether must be regarded as sensibly incompressible, in
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treating of the motions which constitute light*, appears to me of

great force. The supposition of incompressibility reduces the two

arbitrary constants to one
;
but as the equations are not thus

rendered more manageable, I have retained them in their more

general shape.

The first problem relating to an elastic medium of which the

object that I had in view required the solution was, to determine

the disturbance at any time, and at any point of an elastic medium,

produced by a given initial disturbance which was confined to a

finite portion of the medium. This problem was solved long ago by

Poisson, in a memoir contained in the tenth volume of the Memoirs

of the Academy of Sciences. Poisson indeed employed equations

of motion with but one arbitrary constant, which are what the

general equations of motion become when a certain numerical

relation is assumed to exist between the two constants which

they involve. This relation was the consequence of a particular

physical supposition which he adopted, but which has since been

shewn to be untenable, inasmuch as it leads to results which are

contradicted by experiment. Nevertheless nothing in Poisson's

method depends for its success on the particular numerical rela-

tion assumed; and in fact, to save the constant writing of a

radical, Poisson introduced a second constant, which made his

equations identical with the general equations, so long as the

particular relation supposed to exist between the two constants

was not employed. I might accordingly have at once assumed

Poisson’s results. I have however begun at the beginning, and

given a totally different solution of the problem, which will I hope

be found somewhat simpler and more direct than Poisson’s. The

solution of this problem and the discussion of the result occupy the

first two sections of the paper.

Having had occasion to solve the problem in all its generality,

I have in one or two instances entered into details which have no

immediate relation to light. I have also occasionally considered

some points relating to the theory of light which have no imme-

diate bearing on diffraction. It would occupy too much room to

enumerate these points here, which will he found in their proper

place. I will merely mention one very general theorem at which

I have arrived by Considering the physical interpretation of a

Cwnb. FhiL Tram. Vol. vn. p. 2.
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certain step of analysis, though, properly speaking, this theorem

is a digression from the main object of the paper. The theorem

may be enunciated as follows.

If any material system in which the forces acting depend only

on the positions of the particles he slightly disturbed from a

position of equilibrium, and then left to itself, the part of the

subsequent motion which depends on the initial displacements

may be obtained from the part which depends on the initial

velocities by replacing the arbitrary functions, or arbitrary con-

stants, which express the initial velocities by those which express

the corresponding initial displacements, and differentiating with

respect to the time.

Particular cases of this general theorem occur so frequently

in researches of this kind, that I think it not improbable that the

theorem may be somewhere given in all its generality. I have

not however met with a statement of it except in particular cases,

and even then the subject was mentioned merely as a casual re-

sult of analysis.

In the third section of this paper, the problem solved in the

second section is applied to the determination of the law of

disturbance in a secondary wave of light. This determination

forms the whole of the dynamical part of the theory of diffraction,

at least when we confine ourselves to diffraction in vacuum, or,

more generally, within a homogeneous singly refracting medium :

the rest is a mere matter of integration
;
and whatever difficulties

the solution of the problem may present for particular forms of

aperture, they are purely mathematical.

In the investigation, the incident light is supposed to be

plane-polarized, and the following results are arrived at. Each

diffracted ray is plane-polarized, and the plane of polarization is

determined by this law
;
The plane of vibration of the diffracted

ray is parallel io the direction of vibration of the incident ray.

The expression plane of vibration is here used to denote the plane

passing through the ray and the direction of vibration. The

direction of vibration in any diffracted ray being determined by

the law above mentioned, the phase and coefficient of vibration

at that part of a secondary wave are given by the formulae of

Art. 33.

The law just enunciated seems to lead to a crucial experiment

for deciding between the two rival theories respecting the direc-
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tions of vibration in plane-polarized light. Suppose the plane of

polarization, and consequently the plane of vibration, of the

incident light to be turned round through equal angles of say

5° at a time. Then, according to theory, the planes of vibration

of the diffracted ray will not be distributed uniformly, but will be

crowded towards the plane perpendicular to the plane of diffrac-

tion, or that which contains the incident and diffracted rays.

The law and amount of the crowding will in fact be just the

same as if the planes of vibration of the incident ray were repre-

sented in section on a plane perpendicular to that ray, and then

projected on a plane perpendicular to the diffracted ray. Now
experiment will enable us to decide whether the planes ofpolariza-

tion of the diffracted ray are crowded towards the plane of dif-

fraction or towards the plane perpendicular to the plane of dif-

fraction, and we shall accordingly be led to conclude, either that

the direction of vibration is perpendicular, or that*it is parallel to

the plane of polarization.

In ordinary cases of diffraction, the light is insensible at such

a small distance from the direction of the incident ray produced

that the crowding indicated by theory is too small to be detected

by experiment. It is only by means of a fine grating that we
can obtain light of considerable intensity which has been diffracted

at a large angle.

On mentioning to my friend, Professor Miller, the result at

which I had arrived, and making some inquiries about the fine-

ness, &c. of gratings, he urged me to perform the experiment

myself, and kindly lent me for the purpose a fine glass grating,

which he has in his possession. For the use of two graduated

instruments employed in determining the positions of the planes

of polarization of the incident and diffracted rays I am indebted

to the kindness of my friend Professor O’Brien.

The description of the experiments, and the discussion of the

results, occupies Part II. of this Paper. Since in a glass grating

the diffraction takes place at the common surface of two different

media, namely, air and glass, the theory of Part. I. does not quite

meet the case. Nevertheless it does not fail to point out where-

abouts the plane of polarization of the diffracted ray ought to lie,

according as we adopt one or other of the hypotheses respecting

the direction of vibration. For theory assigns exact results on the

two extreme suppositions, first

,

that the diffraction takes place
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before the light reaches the grooves; secondly
,
that it takes place

after the light has passed between them; and these results are

very different, according as we suppose the vibrations to be per-

pendicular or parallel to the plane of polarization. Most of the

experiments were made on light which was diffracted in passing

through the grating. The results appeared to be decisive in

favour of Fresnel’s hypothesis. In fact, theory shews that diffrac-

tion at a large angle is a powerful cause of crowding of the planes

of vibration of the diffracted ray towards the perpendicular to the

plane of diffraction, and experiment pointed out the existence of a

powerful cause of crowding of the planes of polarization towards the

plane of diffraction
;
for not only was the crowding in the contrary

direction due to refraction overcome, but a considerable crowding

was actually produced towards the plane of diffraction, especially

when the grooved face of the glass plate was turned towards the

incident light.

The experiments were no doubt rough, and are capable of

being repeated with a good deal more accuracy by making some

small changes in the apparatus and method of observing. Never-

theless the quantity with respect to which the two theories are

at issue is so large that the experiments, such as they were, seem

amply sufficient to shew which hypothesis is discarded by the

phenomena.

The conclusive character of the experimental result with

regard to the question at issue depends, I think, in a great

measure on the simplicity of the law which forms the only result

of theory that it is necessary to assume. This law in fact merely

asserts that, whereas the direction of vibration in the diffracted

ray cannot be parallel to the direction of vibration in the incident

ray, being obliged to be perpendicular to the diffracted* ray, it

makes with it as small an angle as is consistent with the above

restriction. This law seems only just to lie beyond the limits of

the geometrical part of the theory of undulations. At the same

time I may be permitted to add that, for my own part, I feel very

great confidence in the equations of motion of the luminiferous

ether in vacuum, and in that view of the nature of the ether

which would lead to these equations, namely, that in the propa-

gation of light, the ether, from whatever reason, behaves like an

elastic solid. But when we consider the mutual action of the

luminiferous ether and ponderable matter, a wide field, as it
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seems to me, is thrown open to conjecture. Thus, to take the

most elementary of all the phenomena which relate to the action

of transparent media on light, namely, the diminution of the

velocity of propagation, this diminution seems capable of being

accounted for on several different hypotheses. And if this elemen-

tary phenomenon leaves so much room for conjecture, much more

may we form various hypotheses as to the state of things at the

confines of two media, such as air and glass. Accordingly, con-

clusions in favour of either hypothesis which are derived from the

comparison of theoretical and experimental results relating to the

effects of reflection and refraction on the polarization of light,

appear to me much more subject to doubt than those to which we

are led by the experiments here described.

In commencing the theoretical investigation of diffraction, I

naturally began with the simpler case of sound. As, however, the

results which I have obtained for sound are of far less interest

than those which relate to light, I have here omitted them, more

especially as the paper has already swelled to a considerable size.

I may, perhaps, on some future occasion bring them before the

notice of this Society.

PAET I.

THEORETICAL INVESTIGATION.

Section I. Preliminary Analysis.

1. In what follows there will frequently be occasion to ex-

press a triple integration which has to be performed with respect

to all space, or at least to all points of space for which the quantity

to be integrated has a value different from zero. The conception

of such an integration, regarded as a limiting summation, presents

itself clearly and readily to the mind, without the consideration of

co-ordinates of any kind. A system of co-ordinates forms merely

the machinery by which the integration is to be effected in par-

ticular cases
;
and when the function to be integrated is arbitrary,

and the nature of the problem does not point to one system rather

than another, the employment of some particular system, and the
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analytical expression thereby of the function to he integrated,

serves only to distract the attention by the introduction of a

foreign element, and to burden the pages with a crowd of un-

necessary symbols. Accordingly, in the case mentioned above, I

shall merely take dV to represent an element of volume, and

write over it the sign JJJ, to indicate that the integration to he

performed is in fact triple. Integral signs will he used in this

manner without limits expressed when the integration is to extend

to all points of space for which the function to be integrated differs

from zero.

There will frequently he occasion too to represent a double

integration which has to be performed with reference to the sur-

face of a sphere, of radius r, described round the point which is

regarded as origin, or else a double integration which has to he

performed with reference to all angular space. In this case the

sign // will he used, and dS will he taken to represent an element

of the surface of the sphere, and dcr to represent an elementary

solid angle, measured by the corresponding element of the surface

of a sphere described about its vertex with radius unity. Hence,

if dV, dS, dcr denote corresponding elements, dS~r2
dcr, dV

= drdS = r
2
drdcr. When the signs /// and //, referring to differen-

tials which are denoted by a single symbol, come together, or

along with other integral signs, they will be separated by a dot, as

for example Jff.JJUdVda.

d2 d2 d2

2. As the operation denoted by ^ -I- ^ will be per-

petually recurring in this paper, I shall denote it for shortness

by v* This operation admits of having assigned to it a geometri-

cal meaning which is independent of co-ordinates. For if P be

the point (j%

,

y, z), T a small space containing P, which will finally

be supposed to vanish, dn an element of a normal drawn outwards

at the surface of P, U the function which is the subject of the

<P d2 d2

operation, and if v be defined as the equivalent of^ ^ +
d»"

it is easy to prove that

[dU

VU= limit of dS. •(1 ).

the integration extending throughout the surface of T, of which
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dS is an element. In fact, if l, m, n be the direction-cosines of the

normal, we shall have

ffcZZ7, c [[ (jdU dU dU\

ISTn
dS -ji[‘l* m -^ + n

ls)
dS

(2)- ’

We have also, supposing the origin of co-ordinates to be at the

point P, as we may without loss of generality,

dU [dU\
,

(d2 U\
, ( d

2 TJ\
,

(d*U\
dx \ dx) \ dx

2
)
X

\dxdy) ^ \dxdz)
Z

-f terms of the 2nd order, &c (3),

where the parentheses denote that the differential coefficients

which are enclosed in them have the values which belong to the

ffd XT
point P. In the integral 11 dy dz

,
each element must be

taken positively or negatively, according as the normal which

relates to it makes an acute or an obtuse angle with the positive

direction of the axis of x. If we combine in pairs the elements of

the. integral which relate to opposite elements of the surface of T
}

we must write
JJ

~ *^r) where the single and double

accents subscribed refer respectively to the first and second points

in which the surface of T is cut by an indefinite straight line

drawn parallel to the axis of x,
and in the positive direction,

through the point (0, y, z). We thus get by means of (3), omitting

the terms of a higher order than the first, which vanish in the

limit,

II(% //<*»-*>**•

But JJ (x„ — x
7) dy dz is simply the volume T

\

Treating in the

same manner the two other integrals which appear on the right-

hand side of equation (2), we get

if

)dU
dn
dS=T a + (d?U\

+
dx2 {dy2

/ { dz*/
,
ultimately.

Dividing by T and passing to the limit, and omitting the paren-

theses, which are now no longer necessary, we obtain the theorem

enunciated.
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If in equation (1) we take for T the elementary volume

r
2
sin 6 dr dQ d(f> ,

or r dr dO dz, according as we wish to employ

polar co-ordinates, or one of three rectangular co-ordinates com-

bined with polar co-ordinates in the plane of the two others, we
may at once form the expression for vU}

and thus pass from rect-

angular co-ordinates to either of these systems without the trouble

of the transformation of co-ordinates in the ordinary way.

3. Let / be a quantity which may be regarded as a function

of the rectangular co-ordinates of a point of space, or simply, with-

out the aid of co-ordinates, as having a given value for each point

of space. It will be supposed that f vanishes outside a certain

portion T of infinite space, and that within T it does not become

infinite. It is required to determine a function V by the conditions

that it shall satisfy the partial differential equation

’ VU=/. (4)

at all points of infinite space, that it shall nowhere become in-

finite, and that it shall vanish at an infinite distance.

These conditions are precisely those which have to be satisfied

by the potential of a finite mass whose density is —//4tt
;
and we

shall have accordingly, if 0 be the point for which the value of IT

is required, and r be the radius vector of any element drawn from 0,

v-lllfar- ®
In fact, it may be proved, just as in the theory of potentials, that

the expression for U given by (5) does really satisfy (4) and the

given conditions; and consequently, if U+ U be the most general

solution, TT must satisfy the equation \jTJ' = 0 at all points, must

nowhere become infinite, and must vanish at an infinite distance.

But this being the case it is easy to prove that TJ' cannot be

different from zero.

The solution will still hold good in certain cases when / is

infinite at some points, or when it is not confined to a finite space

T
}
but only vanishes at an infinite distance. But such instances

may be regarded as limiting cases of the problem restricted* as

above, and therefore need not be supposed to be excluded by those

restrictions.
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4. Let £7be a quantity depending upon the time t, as well as

upon the position of the point of space to which it relates, and

satisfying the partial differential equation

d'
2U

df
= as

y?7.. .(6).

It is required to determine Z7by the above equation and the con-

ditions that when t = 0, U and dU/dt shall have finite values

given arbitrarily within a finite space T, and shall vanish outside T.

Let 0 be the point for which the value of U is sought, r the

radius vector of any element drawn from 0; f (r),F (r) the initial

values of U, dU/dt. By this notation it is not meant that these

values are functions of r alone, for they will depend likewise upon

the two angles which determine the direction of r
;
hut there will

be no occasion to express analytically their dependence on those

angles. The solution of the problem is

•(7).U= ~UF(at) da+~j
t
tJlf{at) da

See a memoir by Poisson Mdm. de VAcaddmie, Tom. in. p. 130,

or Gregory s Examples, p. 499.

5. Let $ be a function which has given finite values within

a finite portion of space, and vanishes elsewhere
;
and let it be

required to determine three functions rj
, £ by the conditions

^ ^ — 0
dy dz dz dx dx dy

.(8),

§£ 4. 4. K

dx
+
dy
+
dz •O)-

The functions rj
y £ are further supposed not to become infinite,

and to vanish at an infinite distance. To save repetition, it will

here be remarked, once for all, that the same supposition will be

made in similar cases.

By virtue of equations (8), %dx -f rjdy + £dz is an exact diffe-

rential dyfr, and (9) gives yyfr — & Hence we have by the

formula (5) «
and being known, f, rj, f will be obtained by, mere differentia-
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tion. To differentiate yfr with respect to x
,
it will be sufficient to

differentiate 8 under the integral sign. For draw 00' parallel to’

the axis of x, and equal to Ax, let P, P' be two points similarly

situated with respect to 0, O', respectively, and consider the part

of yfr and that of due to equal elements of volume dV
situated at P, P' respectively. For these two elements r has the

same value, since OP = O'P and in passing from the first to the

second 8 is changed into 8 4- AS, and therefore the increment of ^
is simply — AhJ^irr , dV. To get the complete increment of ^ we
have only to perform -the triple integration, an integration which

is always real, even though r vanishes in the denominator, as may
be readily seen on passing momentarily to polar co-ordinates.

Dividing now by Ax and passing to the limit, we get

t == ^t =z _
dx 4?7tJJJ dx r

(ii).

By employing temporarily rectangular co-ordinates in the

triple integration, integrating by parts with respect to x
,
and

observing that the quantity free from the integral sign vanishes atJ
the limits, we get

?=
~ HIJp cos dv (i2)*

as might have been readily proved from (10), by referring 0 to

a fixed origin, and then differentiating with respect to x. The
expressions for rj and f may be written down from symmetry.

G. Let w', %
«"'

be three functions which have given finite

values throughout a finite space and vanish elsewhere
;

it is re-

quired to determine three other functions, rj
9 £ by the condi-

tions

dy dz y dz a- 2”"

dx dy
+
dz (14).

It is to be observed that w', w", vs‘" are not independent. For
differentiating equations (13) with respect to x, y, z, and adding,
we get
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Hence -ex', ct", 'cr"
,

.must be supposed given arbitrarily only in so

far as is consistent with the above equation.

Eliminating f from (14), and the second of equations (13),

we get

d fd% dy\ cPg__„(fer"

dx \dx
+
dy) dz1 dz

’

which becomes by the last of equations (13)

t Q /<far" <fe'"\

Consequently, by equation (5),

i_ [[[(*"” dv
*

27r JJJ V dy dz ) r

Transforming this equation in the same manner as (11), sup-

posing x
, y> z measured from 0

,
and writing down the two equa-

tions found by symmetry, we have finally,

v = ~JJK^' -«**'")%

y*')^

(16).

7. Let 8, v/

,

«r'" be as before
;
and let it be required to

determine three functions tj, f from the equations (9) and (13).

From the linearity of the equations it is evident that we have

merely to add together the expressions obtained in the last two

articles.

8. Let £0 ,
rj
0) f0 be three functions given arbitrarily within

a finite space outside of which they are equal to zero : it is re-

quired to decompose these functions into two parts fx , rf%) f and
such that %x

dx + rjfly + gxdz maybe an exact differential

dtyq, and f2 , f2 may satisfy (14).
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Observing that y* ^V0 ~V^ & = 5> “ £i> expressing

yv £ in terms of^ and substituting in (14), we get

Wq = S
0 ,

where S
0
is what S becomes when g0 , y 0 ,

are written for f, yf f
The above equation gives

whence 9^, fx ,
and consequently £2 , ^2 , f2 ,

are known.

Section II.

Propagation of an Arbitrary Disturbance in an Elastic Medium.

9. The equations of motion of a homogeneous uncrystallized

elastic medium, such as an elastic solid, in which the disturbance

is supposed to be very small, are well known. They contain two

distinct arbitrary constants, which cannot be united in one with-

out adopting some particular physical hypothesis. These equations

may be obtained by supposing the medium to consist of ultimate

molecules, but they by no means require the adoption of such a

hypothesis, for the same equations are arrived at by regarding the

medium as continuous.

Let x
, y,

z be the co-ordinates of any particle of the medium in

its natural state; y} f the displacements of the same particle at

the end of the time t, measured in the directions of the three axes

respectiyely. Then the first of the equations may be put under

the form

U = *
2

(sJ

'

+W+
3?) + (a* " J2) ^ (§+ Ty

+ 8) ’

where a2

,
5
2

,
denote the two arbitrary constants. Put for shortness

, ^7 ,.

dJ-H
dx^ dij dz

s. II.

(17),

17
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and as before represent by vf tbe quantity multiplied by b
2

. Ac-

cording to tbis notation, the three equations of motion are

dt

t

r

dx

.(18).

It' is to be observed that S denotes the dilatation of volume of

the element situated at the point
(
x

, y, ^). In the limiting case

in which the medium is regarded as absolutely incompressible S

vanishes
;
but in order that equations (18) may preserve their

generality, we must suppose a at the same time to become infinite,

and replace a
2
S by a new function of the co-ordinates. If we take

— p to denote this function, we must replace the last terms in these

equations by —^

,

have a fourth unknown function, as well as a fourth equation,

namely that obtained by replacing the second member of (17) by

zero. But the retention of equations (18) in their present more

general form does not exclude the supposition of incompressibility,

since we may suppose a to become infinite in the end just as well

as at first.

respectively, and we shall thus
dy az

10. Suppose the medium to extend infinitely in all directions,

and conceive a portion of it occupying the finite space T to receive

any arbitrary small disturbance, and then to be left to itself, the

whole of the medium outside the space T being initially at rest

;

and let it be required to determine the subsequent motion.

Differentiating equations (18) with respect to x
, y,

2
,
respec-

tively, and adding, we get by virtue of (17)

|
df

=a ^B (19) -

Again, differentiating the third of equations (18) with respect to y,

and the second with respect to z
,
and subtracting the latter of the

two resulting equations from the former, and treating in a similar
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manner the first and third, and then the second and first of equa-

tions (18), we get

d ’if) -mn
f

df

dV
dti
r = 6

2
Vcr

'/

'...(20),

where -or", tx'" are the quantities defined by equations (13).

These quantities express the rotations of the element of the

medium situated at the point (x, y, z) about axes parallel to the

three co-ordinate axes respectively.

Now the formula (7) enables us to express 8, zx", and zx
tn

in

terms of their initial values and those of their differential coeffi-

cients with respect to t
,
w’hich are supposed known

;
and these

functions being known, we shall determine rj, and £ as in Art. 7.

Our equations being thus completely integrated, nothing will

remain but to simplify and discuss the formulae obtained.

11. Let 0 be the point of space at which it is required to

determine the disturbance, r the radius vector of any element

drawn from 0 ;
and let the initial values of S, d8/dt be represented

by f(r), F(r), respectively, with the same understanding as in

Art. 4. By the formula (7), we have

S = ±JfF(at) da + 21).

The double integrals in this expression vanish except when a

spherical surface described round 0 as centre, with a radius equal

to at, cuts a portion of the space T. Hence, if 0 be situated out-

side the space T
,
and if r

4 , r2
be respectively the least and greatest

values of the radius vector of any element of that space, there will

be no dilatation at 0 until at= r
1
. The dilatation will then com-

mence, will last during an interval of time equal to a 1
(r

2
— rj, and

will then cease for ever. The dilatation here spoken of is under-

stood to be either positive or negative, a negative dilatation being

the same thing as a condensation.

Hence a wave of dilatation will be propagated in all directions

from the originally disturbed space T, with a velocity a. To find

the portion of space occupied by the wave, we have evidently only

got to conceive a spherical surface, of radius at, described about

each point of the space T as centre. The space occupied by the

assemblage of these surfaces is that in which the wave of dilatation

17—2
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is comprised. To find the limits of the wave, we need evidently

only attend to those spheres which have their centres situated in

the surface of the space T. When t is small, this system of spheres

will have an exterior envelope of two sheets, the outer of these

sheets being exterior and the inner interior to the shell formed by

the assemblage of the spheres. The outer sheet forms the outer

limit to the portion of the medium in which the dilatation is differ-

ent from zero. As t increases, the inner sheet contracts, and at

last its opposite sides cross, and it changes its character from being

exterior, with reference to the spheres, to interior. It then ex-

pands, and forms the inner boundary of the shell in which the

wave of condensation is comprised. It is easy to shew geometri-

cally that each envelope is propagated with a velocity a in a normal

direction.

12. It appears in a similar manner from equations (20) that

there is a similar wave, propagated with a velocity 6, to which are

confined the rotations s/, or", rz"\ This wave may be called for

the sake of distinction, the wave of distortion
, because in it the

medium is not dilated nor condensed, but only distorted in a man-

ner consistent with the preservation of a constant density. The
condition of the stability of the medium requires that the ratio

of b to a be not greater than that of to 2^.

13. If the initial disturbance be such that there is neither

dilatation nor velocity of dilatation initially, there will be no wave
of dilatation, but only a wave of distortion. If it be such that the

expressions %dx + r)dy + £dz and dg/dt . dx + dr)fit . dy + dtydt . dz
are initially exact differentials, there will be no wave of distortion,

but only a wave of dilatation. By making i = 0 we pass to the

case of an elastic fluid, such as air. By supposing a = oo we pass

to the case of an incompressible elastic solid. In this case we
must have initially S = 0 and dS/dt= 0; but in order that the

results obtained by at once putting a = oo may have the same
degree of generality as those which would be obtained by retaining

a as a finite quantity, which in the end is supposed to increase

indefinitely, we must not suppose the initial disturbance confined

* See a memoir by Green On the reflection and refraction of Light Camb. Phil.

Tram. Yol. vn. p. 2. See also Camb. Phil. Tram. Vol. vixi. p. 819. TAnte Yol. i.

p. 128.]
1
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to the space T

\

but only the initial rotations and the initial

angular velocities. Consequently, outside T the expression

|;dx -P rjdy + %dz

must he initially an exact differential dyjr, where yjr satisfies the

equation y-v/r = 0 derived from (14), and the expression

dj

dt
dx+ jt

dy +ft dz

must be initially an exact differential d\Jr 1}
where yjr

t
satisfies the

equation ^^ = 0. So long as a is finite, it comes to the same

thing whether we regard the medium as animated initially by

certain velocities given arbitrarily throughout the space T, or as

acted on by impulsive accelerating forces capable of producing

those velocities
;
and the latter mode of conception is equally

applicable to the case of an incompressible medium, for which a

is infinite, although we cannot in that case conceive the initial

velocities as given arbitrarily, but only arbitrarily in so far as is

compatible with their satisfying the condition of incompressibility.

It is not so easy to see what interpretation is to be given, in the

case of an incompressible medium, to the initial displacements

which are considered in the general case, in so far as these dis-

placements involve dilatation or condensation. As no simplicity

worth mentioning is gained by making a at once infinite, this

constant will be retained in its present shape, more especially as

the results arrived at will thus have greater generality.

14. The expressions for the disturbance of the medium at the

end of the time t are linear functions of the initial displacements

and initial velocities; and it appears from (21), and the corre-

sponding equations which determine 'Z3J
,

TtT
'

y
and 'c/", that the part

of the disturbance which is due to the initial displacements may
be obtained from the part which is due to the initial velocities by

differentiating with respect to t, and replacing the arbitrary func-

tions which represent the initial velocities by those which represent

the initial displacements. The same result constantly presents

itself in investigations of this nature : on considering its physical

interpretation it will be found to be of extreme generality.

Let any material system whatsoever, in wdiich the forces acting

depend only on the positions of the particles, be slightly disturbed
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from a position of equilibrium, and then left to itself. In order

to represent the most general initial disturbance, we must suppose

small initial displacements and small initial velocities, the most

general possible consistent with the connexion of the parts of the

system, communicated to it. By the principle of the superposition

of small motions, the subsequent disturbance will be compounded

of the disturbance due to the initial velocities and that due to

the initial displacements. It is immaterial for the truth of this

statement whether the equilibrium be stable or unstable
;
only,

in the latter case, it is to be observed that the time t which has

elapsed since the disturbance must be sufficiently small to allow

of our neglecting the square of the disturbance which exists at

the end of that time. Still, as regards the purely mathematical

question, for any previously assigned interval t, however great, it

will be possible to find initial displacements and velocities so

small that the disturbance at the end of the time t shall be as

small as we please
;
and in this sense the principle of superposi-

tion, and the results which flow from it, will be equally true

whether the equilibrium be stable or unstable.

Suppose now that no initial displacements were communicated

to the system we are considering, but only initial velocities, and

that the disturbance has been going on during the time t. Let

f(t) be the type of the disturbance at the end of the time t
,
where

f (t) may represent indifferently a displacement or a velocity,

linear or angular, or in fact any quantity whereby the disturbance

may be defined. In the case of a rigid body, or a finite number

of rigid bodies, there will be a finite number of functions / (t) by

which the motion of the system will be defined : in the cases of

a flexible string, a fluid, an elastic solid, &c., there will be an

infinite number of such functions, or, in other words, the motion

will have to be defined by functions which involve one or more

independent variables besides the time. Let v
0
be in a similar

manner the type of the initial velocities, and let t be an incre-

ment of t, which in the end will be supposed to vanish. The

disturbance at the end of the time t + r will be represented by

/ (t 4* t)
;
but since by hypothesis the forces acting on the system

do not depend explicitly on the time, this disturbance is the same

as would exist at the end of the time t in consequence of the

system of velocities v0 communicated to the material system at the

commencement of the time — r, the system being at that instant
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in its position of equilibrium. Suppose then the system of velo-

cities v
0
communicated in this manner, and in addition suppose

the system of velocities —v
0
communicated at the time 0. On

account of the smallness of the motion, the disturbance produced

by the system of velocities v0 will be expressed by linear functions

of these velocities
;
and consequently, if / (t) represent the dis-

turbance due to the system of velocities'^, —

/

(t) will represent

the disturbance due to the system — v
0

. Hence the disturbance

at the end of the time t will be represented by / (t + r) —/(<).

Now we may evidently regard the state of the material system

immediately after the communication of the system of velocities

— v
0
as its initial state, and then seek the disturbance which would

be produced by the initial disturbance. The velocities v0 going on

during the time r will have produced by the end of that time a

system of displacements represented by rv0 . By hypothesis, the

system was in a position of equilibrium at the commencement of

the time — r; and since the forces are supposed not to depend

on the velocities, but only on the positions of the particles, the

effective forces during the time r vary from zero to small quan-

tities of the order r, and therefore the velocities generated by the

end of the time — t are small quantities of the order r2
. Hence

the velocities — v0 communicated at the time 0 destroy the pre-

viously existing velocities, except so far as regards small quantities

of the order t2
, which vanish in the limit, and therefore we have

nothing to consider but the system of displacements tv
q . Hence

the disturbance produced by a system of initial displacements tv
0

is represented by ultimately; and therefore the

disturbance produced by a system of initial displacements v
Q

is

represented by the limit of {/ (t + t) —/ (£)} /r, or byf (t). Hence,

to get the disturbance due to the initial displacements from that

due to the initial velocities, we have only to differentiate with

respect to t, and to replace the arbitrary constants or arbitrary

functions which express the initial velocities by those which

express the corresponding initial displacements. Conversely, to

get the disturbance due to the initial velocities from that due to

the initial displacements, we have only to change the arbitrary

constants or functions, and to integrate with respect to t
}
making

the integral vanish with t if the disturbance is expressed by dis-

placements, or correcting it so as to give the initial velocities when

t = 0 if the disturbance is expressed by velocities.
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The reader may easily, if he pleases, verify this theorem on

some dynamical problem relating to small oscillations.

15. Let us proceed now to determine the general values of

£, rj, fin terms of their initial values, and those of their differential

coefficients with respect to t. By the formulae of Section L, £, rj
, f

are linear functions of 8, vs', vr", and vs"', and we may therefore

first form the part which depends upon 8, and afterwards the part

which depends upon vj\ vr", vr'", and then add the results together.

Moreover, it will be unnecessary to retain the part of the expres-

sions which depends upon initial displacements, since this can be

supplied in the end by the theorem of the preceding article.

Omitting then for the present vr', vt", vt'", as well as the

second term in equations (21), we get from equations (10) and (21),

dVda,
(
22).

To understand the nature of the integration indicated in this

equation, let 0 be the point of space for which the value of yfr is

sought
;
from 0 draw in an arbitrary direction OP equal to r, and

from P draw, also in an arbitrary direction, PQ equal to at. Then
F (at) denotes the value of the function F, or the initial jrate of

dilatation, at the point Q of space, and we have first to perform a

double integration referring to all such points as Q, P being fixed,

and then a triple integration referring to all such points as P. To
facilitate the transformation of the integral (22), conceive PQ
produced to Q let PQ'=s

,
let dV' be an element of volume,

and replace the double integral // F . da by the triple integral

h~ l

///F . dV\ taken between the limits defined by the imparities

at<s<at + h, which may be done, provided h be finally made to

vanish. We shall thus have two triple integrations to perform,

each of which we may conceive to extend to all space, provided we

regard the quantity to be integrated as equal to zero when PQf,

(or as it may now he denoted PQ, Q being a point taken generally,)

lies beyond the limits at and at + h, as well as when the point Q
falls outside the space T, to which the disturbance was originally

confined. Now perform the first of the two triple integrations on

the supposition that Q remains fixed while P is variable, instead

of supposing P to remain fixed while Q is variable. We shall thus

have F constant and r variable, instead of having F variable and r
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constant. This first triple integration must evidently extend

throughout the spherical shell which has Q for centre and at
,
at + h

for radii of the interior and exterior surfaces. We get, on making

h vanish,

i frfdv rr
limit of i — =

h J J J t J J

dS
r

9

dS being an element of the surface of a sphere described with Q
for centre and at for radius. Now if OQ =r\ the integral JJ r~

x dS

,

which expresses the potential of a spherical shell, of radius at and

density unity, at a point situated at a distance r from the centre,

is equal to krrat or 47raY/r', according as r oat Substituting

in (22), and omitting the accents, which are now no longer necessary,

we get

where the limits of integration are defined by the imparities written

after the integrals, as will be done in similar cases.

16. Let u
Q,

vQ)
w

0,
be the initial velocities; then

F= du
° +

dv
° +

dE\
doc ay dz

Substituting in the first term of the right-hand member of equation

(23), and integrating by parts, exactly as in Art. 5, we get

-
1 -~L s//(W«-

W

,)*.

where the % denotes that we must take the sum of the expression

written down and the two formed from it by passing from x to y
and from y to z, and the single and double accents refer respectively

to the first and second point in which the surface of a sphere

having 0 for centre, and at for radius, is cut by an indefinite line

drawn parallel to the axis of x
,
and in the positive direction, through

the point (0} y, z). Treating the last term in equation (23) in the

same way, and observing that the quantities once integrated vanish

at an infinite distance, or, to speak more properly, at the limits of

the space T
,
we get

- s/jj ?

'

iv(
-
r > 1- lL t

II!<“•'"
“ d,J*

-^ ///K* + %y + ^{r> at).
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The double integrals arising from the transformation of the

second member of equation (23) destroy one another, and we get

SjjJ(ujc+w+ V)^!r (
r><“> C2*!'

17 To obtain the part of the displacement f due to the

initial velocity of dilatation, we have only to differentiate ^ with

respect to *, and this will be effected by differentiating u
?

, v0 w
0

under the integral signs, as was shewn in Art. 5. Wing the

resulting expression by integration by parts, as before, and putting

7 m „ for the direction-cosines of the radius vector drawn to the

point to which the accents refer, and & for the part of £ due to F,

we get

p _J_ [

f

f
flu + mv

0 + nw0) /y - (lu
0
4- mv0 + nw0 ),}

dy dz
47ratJJ

477

Let q0 he the initial velocity resolved along the radius vector,

so that q0 = lu0+ mv0+ nw„ ,
and (q,) at be the value of q0 at a dis-

tance at from 0 then

// {(«»» + ml\ + »«VL ~ QU0 + mV° + MW
o)rl

dlJ dZ

= jm2o)a,dS = aHi
Jfl{q0)M (Z<r,

and
d x

"° dx r3 >dxr°

d z _u
0
— 3lq

0

°dx?

Substituting in the expression for we get finally

/7F
^2o) ^r (

r > at) (25)*

18. Let us now form the part of £ which depends on the

initial rotations and angular velocities, and which may be denoted

by £2
. The theorem of Art. 14 allows us to omit for the present

the part due to the initial rotations, which may be supplied in the

end. Let <o', w", <o'" be the initial angular velocities. Then f2
is given in terms of vj" and vr'" by the first of equations (16), and
tsr

A/

,
zr

tr

are given in terms of co'\ co'" by the formula (7), in which
however l must be put for a. We thus get

dVda—ar- •
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The integrations in this expression are to be understood as in

Art. 15, and <»
0
", o>

0

"' are supposed to have the values which belong

to the point Q ,
but TQ is now equal to It instead of at The

quintuple integral may be transformed into a triple integral just

as before. We get in the first place

t

87

r

5
•(26).

The double integration in this expression refers to all angular

space, considered as extending round Q ;
x, y ,

z are the co-ordi-

nates, measured from 0, of a point P situated at a distance bt from

Q, and r = OP. If dS= {bt) da, the expressions for the integrals

tixr'dS, ffyr~
3
dS, ffzr^dS

may be at once written down by observing that these integrals

express the components of the attraction of a spherical shell, of

radius bt and density 1, having Q for centre, on a particle situated

at 0. Hence if x, y , z be the co-ordinates of Q, measured from

0, and r = OQ, the integrals vanish when r’ < bt, and are equal to

47r (bt)Vr'~3
,

47r (bt)
2
y'r'~

s
,

4ir (&g)Vr'”®,

respectively, when r > bt. Hence we get from (26), omitting the

accents, which are now no longer necessary, since we have done

with the point P,

{,-^fJf m-
Now

<0 <>„" -in*

-

dw
‘

2 0 ~ dy ’
* 0 ~ 9

_dv_n _dM0

dx ’ 0 dx dy •dz ’ “w°
_

dz

Substituting in (27), and adding and subtracting x . dujdx under

the integral signs, we get

£2

t

47

r

ffff (irjjj \

d

dx

d d

l dua dv,
,

dw\\ dV
, ljX

But x . d/dx + y . d/dy + z. djdz is the same thing as r . d/dr, and

we get accordingly

///(

d
,

d
,

00

dx y dy
Z

dz.

dV

,

J)u~(r>bt)

I ' fj lr
dr da ^ >ht')

= ~jj (
uXd<r-
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The second part of is precisely the expression transformed in

the preceding article, except that the sign is changed, and b pnt

for a. Hence -we have

f,
= ~Jf

(«. - ko\A - ^///(«o "m^ (r > &*) • -(28).

19. Adding together the expressions for and fa>
we get for

the disturbance due to the initial velocities

f “ 4iff
1 kokdo- +

4~fj(
u°~ h»)uda

+ 1Ifff (%o-«o) -/ (bt<r<at) (29).

The part of the disturbance due to the initial displacements

may be obtained immediately by the theorem of Art. 14. Let £0 ,

7]Qf £0 be the initial displacements, p0
the initial displacement

resolved along a radius vector drawn from 0. The last term in

equation (29), it will be observed, involves t in tw.o ways, for t

enters as a coefficient, and likewise the limits depend upon t. To

find the part of the differential coefficient which relates to the

variation of the limits, we have only to replace dV by r2drda, and

treat the integral in the usual way. We get for the part of the

disturbance due to the initial displacements

+ill{*+ u w- l k-+ b‘%l*'
•

+MI (8lPo-io)^(bt<r < at) (30).

It is to be recollected that in this and the preceding equation l

denotes the cosine of the angle between the axis of x and an arbi-

trary radius vector drawn from 0, whose direction varies from one

element dcr of angular space to another, and that the at or bt sub-

scribed denotes that r is supposed to be equal to at or bt after

differentiation. To obtain the whole displacement parallel to x
which exists at the end of the time t at the point 0, we have only

to add together the second members of equations (29) and (30).

The expressions for rj and £ may be written down from symmetry,

or rather the' axis of x may be supposed to be measured in the

direction in which we wish to estimate the displacement.
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20. The first of the double integrals in equations (29), (30)

vanishes outside the limits of the wave of dilatation, the second

vanishes outside the limits of the wave of distortion. The triple

integrals vanish outside the outer limit of the wave of dilatation,

and inside the inner limit of the wave of distortion, but have finite

values within the two waves and between them. Hence a particle

of the medium situated outside the space T does not begin to move

till the wave of dilatation reaches it. Its motion then commences,

and does not wholly cease till the wave of distortion has passed,

after which the particle remains absolutely at rest.

21. If the initial disturbance be such that there is no wave of

distortion, the quantities zr', zr", nr"', co', co", co'" must be separately

equal to zero, and the expression for £ will be reduced to given

by (25), and the expression thence derived which relates to the

initial displacements. The triple integral in the expression for £
vanishes when the wave of dilatation has passed, and the same is

the case with the corresponding integral which depends upon the

initial displacements. Hence the medium returns to rest as soon

as the wave of dilatation has passed
;
and since even in the general

case each particle remains at rest until the wave of dilatation

reaches it, it follows that when the initial disturbance is such that

no wave of distortion is formed the disturbance at any time is con-

fined to the wave of dilatation. The same conclusion might have

been arrived at by transforming the triple integral.

22.

When the initial motion is such that there is no wave of

dilatation, as will be the case when there is initially neither dilata-

tion nor velocity of dilatation, £ will be reduced to £2 ,
given by

(28), and the corresponding expression involving the initial dis-

placements. By referring to the expression in Art. 17, from which

the triple integral in equation (28) was derived, we get

j Jj (
u
°
~ Sl^ if'-JU (

W
° dx r*

+ V
° dx? + W

° dxr»)
dK “(S1)-

Now

un % dx dy dz
) dx r

8

-//(¥) <&*-///£"
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the parentheses denoting that the quantity enclosed in them is to

be taken between limits. By the condition of the absence of initial

velocity of dilatation we have

Substituting in the second member of equation (31), and writing

down for the present only the terms involving v
0 ,
we obtain

which, since d/dx . ;y/r
8 = djdy

.

#/r
3
,
becomes

”//(?)**•

Treating the terms involving w
0
in the same manner, and substitu-

ting in (31), we get

///<»•- d'j d“+
jl (?)

** <!!{¥) *’*

Now the integration is to extend from r = bt to r=co. The

quantities once integrated vanish at the second limit, and the first

limit relates to the surface of a sphere described round 0 as centre

with a radius equal to bt. Putting dS or bV dor for an element of

the surface of this sphere, we obtain for the value of the second

member of the last equation

- (W)
" 2

II [K + mvo + nw
0\t

ldS, or - ffl (q0) bt
dcr

;

and therefore the triple integral in equation (28) destroys the

second part of the double integral in the same equation. Hence,

writing down also the terms depending upon the initial displace-

ments, we obtain for £ the very simple expression

This expression might have been obtained at once by applying

the formula (7) to the first of equations (18), which in this case

take the form (6), since 8 = 0.

23. Let us return now to the general case, and consider

especially the terms which alone are important at a great distance

from the space to which the disturbance was originally confined

;
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and, first, let us take the part of £ which is due to the initial

velocities, which is given by equation (29).

Let the three parts of the second member of this equation be

denoted by %a, %hi respectively, and replace dcr by (at)~
2 dS

or (lt
)~ 2 dS, as the case may be ;

then

<**>•

Let 0
1
be a fixed point, taken within the space T, and regarded as

the point of reference for all such points as 0

.

Then when 0 is at

such a distance from 0
1
that the radius vector, drawn from 0, of

any element of T makes but a very small angle with 00v we may

regard l as constant in the integration, and equal to the cosine of

the angle between 00
l
and the direction in which we wish to

estimate the displacement at 0. Moreover the portion of the

surface of a sphere having 0 for centre which lies within T will be

ultimately a plane perpendicular to 00v and q0
will be ultimately

the initial velocity resolved in the direction 00v Hence we have

ultimately

where, for a given direction of 0
10, the integral receives the same

series of values, as at increases through the value 00v whatever

be the distance of 0 from 0V Since the direction of the axis of x

is arbitrary, and the component of the displacement in that direc-

tion is found by multiplying by l a quantity independent of the

direction of the axes, it follows that the displacement itself is in

the direction 00v or in the direction of a normal to the wave. For

a given direction of 0
1 0, the law of disturbance is the same at one

distance as at another, and the magnitude of the displacements

varies inversely as at, the distance which the wave has travelled in

the time t

We get in a similar manner

ft = 4dgsjj] («o
- -(33),

where Z, and the direction of the resolved part, q0,
of the initial

velocity are ultimately constant, and the surface of which dS is an

element is ultimately plane. To find the resolved part of the dis-

placement in the direction 00
t ,
we must suppose x measured in



272 ON THE DYNAMICAL THEORY OF DIFFRACTION.

that direction, and therefore put l — l
} q0= u

0 ,
‘which gives %b

= 0.

Hence the displacement now considered takes place in a direction

perpendicular to OOlt or is transversal .

For a given direction of O
x
O, the law of disturbance is constant,

hut the magnitude of the displacements varies inversely as bt, the

distance to which the wave has been propagated. To find the dis-

placement in any direction, OE, perpendicular to 001? we have

only to take OE for the direction of the axis of x, and therefore

put l = 0, and suppose u
Q
to refer to this direction.

Consider, lastly, the displacement, £c ,
expressed by the last

term in equation (29). The form of the expression shews that

%c
will be a small quantity of the order t/r

3
or 1/r

2

,
since t is of the

same order as r

;

for otherwise the space T would lie outside the

limits of integration, and the triple integral would vanish. But

and %b
are of the order 1/r, and therefore £c

may be neglected,

except in the immediate neighbourhood of T.

To see more clearly the relative magnitudes of these quantities,

let v be a velocity which may be used as a standard of comparison

of the initial velocities, R the radius of a sphere whose volume is

equal to that of the space T, and compare the displacements fa ,

£c
which exist, though at different times, at the same point 0,

where 0
1
0 = r. These displacements are comparable with

vR vT? vBH
ar ’ hr ’ r

3 ’

which are proportional to

1 1 R t

a
5

&’ rV
But, in order that the triple integral in (29) may not wholly vanish,

t/r must lie between the limits 1/a and 1/6, or at most lie a very

little outside these limits, which it may do in consequence of the

finite thickness of the two waves. Hence the quantity neglected

in neglecting £c
is of the order R/r compared with the quantities

retained.

, The important terms in the disturbance due to the initial dis-

placements might be got from equation (30), but they may be

deduced immediately from the corresponding terms in the disturb-

ance due to the initial velocities by the theorem of Art. 14*.
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24. If we confine our attention to the terms which vary

ultimately inversely as the distance, and which alone are sensible

at a great distance from T, we shall be able, by means of the

formulae of the preceding article, to obtain a clear conception of

the motion which takes place, and of its connexion with the initial

disturbance.

From the fixed point O
l9
draw in any direction the right line

O
t
O equal to r, r being so large that the angle subtended at 0 by

any two elements of T is very small
;
and let it be required to

consider the disturbance at 0. Draw a plane P perpendicular to

OOv and cutting OO
t
produced at a distance p from 0r Let —pv

+ p2
be the two extreme values of p for which the plane P cuts

the space T. Conceive the displacements and velocities resolved

in three rectangular directions, the first of these, to which £ and u

relate, being the direction OOv Letfu (p),fv (p), fw (p) be three

functions ofp defined by the equations

fJp)=!KdS, Mp)=JKdS, f„(p)=IJw0dS, (34),

and (V)
three other functions depending on the initial

displacements as the first three do on the initial velocities, so that

Mp)=mM fv (P)=JIv0
dS, f( (p) = SttodS (35).

These functions, it will be observed, vanish when the variable lies

outside of the limits —p
1
and -f-p2

. They depend upon the direc-

tion O
x
O, so that in passing to another direction their values

change, as well as the limits of the variable between which they

differ from zero. It may be remarked however that in passing

from any one direction to its opposite the functions receive the same

values, as the variable decreases from +£>
x
to — p2 ,

that they before

received as the variable increased from —p
1
to +p2 ,

provided the

directions in which the displacements are resolved, as well as the

sides towards which the resolved parts are reckoned positive, are

the same in the two cases.

The medium about 0 remains at rest until the end of the time

(r— pj/a, when the wave of dilatation reaches 0. During the

passage of this wave, the displacements and velocities are given by

the equations

””ib7- ,at ~r>+£~ft" («* - r),

18

-3
11 o II o

•u = 0, oII3

...(36).

S. XL
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The first term in the right-hand member of the first of these

equations is got from (32) by putting l = 1 , introducing the func-

tion fni and replacing at in the denominator by r
, which may

be done, since a t differs from r only by a small quantity depending

upon the finite dimensions of the space T. The second term is

derived from the first by the theorem of Art. 14, and u is of

course got from £ by differentiating with respect to t. Had t

been retained in the denominator, the differentiation would have

introduced terms of the order t~*, and therefore of the order r~
2
,

but such terms are supposed to be neglected.

The wave of dilatation will have just passed over 0 at the end of

the time (r+p
2
)/a. The medium about 0 will then remain

sensibly at rest in its position of equilibrium till the wave of

distortion reaches it, that is, till the end of the time (r—p)/b.
During the passage of this wave, the displacements and velocities

will be given by the equations

—^(W-r) +

”
“Sir iht ~ r '

i + (Jt - 0 _

After the passage of the wave of distortion which
interval of time equal to (p1 +p2

)/b, the medium
absolutely to rest in its position of equilibrium.

occupies an

will return

25. A caution is here
ployment of equation (30).

important terms, we get

necessary with reference to the em~
If we confine our attention to the

f w//'(&)jS+ii6f//{§
- 1 £•}/« • (38).

No.1ie miM displacement, ami eeloeities are supposed to hareSMte, but ether™, arbitrary, r.lue, within the s^ldT
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vanish outside. Consequently we cannot, without unwarrantably

limiting the generality of the problem, exclude from considera-

tion the cases in which the initial displacements and velocities

alter abruptly in passing across the surface of T. In particular,

if we wish to determine the disturbance at the end of the time t

due to the initial disturbance in a part only of the space through-

out which the medium- was originally disturbed, we are obliged

to consider such abrupt variations
;
and this is precisely what

occurs in treating the problem of diffraction. In applying equa-

tion (38) to such a case, we must consider the abrupt variation as

a limiting case of a continuous, but rapid, variation, and we shall

have to add to the double integrals found by taking for dpjdr

and d%Jdr the finite values which refer to the space T
)

certain

single integrals referring to the perimeter of that portion of the

plane P which lies within T. The easiest way of treating the

integrals is, to reserve the differentiation with respect to t from

which the differential coefficients just written have arisen until

after the double integration, and we shall thus be led to the for-

mulae of the preceding article, where the correct values of the

terms in question were obtained at once by the theorem of

Art. 14.

26. It appears from Arts. 11 and 12, that in the wave of

distortion the density of the medium is strictly the same as in

equilibrium
;
but the result obtained in Art. 23, that the displace-

ments in this wave are transversal, that is, perpendicular to the

radius of the wave, is only approximate, the approximation

depending upon the largeness of the radius, r, of the wave

compared with the dimensions of the space T> or, which comes

to the same, compared with the thickness of the wave. In fact,

if it were strictly true that the displacement at 0 due to the

original disturbance in each element of the space T was trans-

versal, it is evident that the crossing at 0 of the various waves

corresponding to the various elements of T under finite, though

small angles, would prevent the whole displacement from being

strictly perpendicular to the radius vector drawn to 0 from an

arbitrarily chosen point, Ov within T. But it is not mathematic

cally true that the disturbance proceeding from even a single

point Ov when a disturbing force is supposed to act, or rather

that part of the disturbance which is propagated with the velocity

18—2

*
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is perpendicular to 0 Ov as will be seen, more clearly in the next

article. It is only so nearly perpendicular that it may be re-

garded as strictly so without sensible error. As the wave grows

larger, the inclination of the direction of displacement to the

wave’s front decreases with great rapidity.

Thus the motion of a layer of the medium in the front of a

wave may be compared with the tidal motion of the sea, or rather

with what it would be if the earth were wholly covered by water.

In both cases the density of the medium is unchanged, and there

is a slight increase or decrease of thickness in the layer, which

allows the motion along the surface to take place without change

of density : in both cases the motion in a direction perpendicular

to the surface is very small compared with the motion along the

surface.

27. From the integral already obtained of the equations of

motion, it will be easy to deduce the disturbance due to a given

variable force acting in a given direction at a given point of the

medium.

Let 0
1
be the given point, T a space comprising Or Let the

time t be divided into equal intervals t
; and at the beginning of

the V
th

interval let the velocity tF
(
n r) he communicated, in the

given direction, to that portion of the medium which occupies
the space T. Conceive velocities communicated in this manner at
the beginning of each interval, so that the disturbances produced
by these several velocities are superposed. Let JD be the den-
sity of the medium in equilibrium

; and let F(n r) == (LT)"1f (n T),
so that rf (n r) is the momentum communicated at the beginning
of the 71

th
interval. Now suppose the number of intervals

r indefinitely increased, and the volume T indefinitely dimin-
ished, and we shall pass in the limit to the case of a moving
force which acts continuously.

&

The disturbance produced by given initial velocities is ex-
pressed, without approximation, by equation (29), that is, without
any approximation depending on the largeness of the distance
y'1 ’

for

T
square of the disturbance has been neglected all

along. Let OO
l = r; refer the displacement at 0 to the rect-

angular axes of x,y,z- let l,m,n be the direction-cosines ofUU1} l, m,n those of the given force, and put for shortness 7c for
’
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the cosine of the angle between the direction of the force and the

line 00
1
produced, so that

h = IV + mm' -f nn\

Consider at present the first term of the right-hand side of

(29). Since the radius vector drawn from 0 to any element of T
ultimately coincides with 00v we may put l outside the integral

signs, and replace da by r~~dS. Moreover, since this term vanishes

except when at lies between the greatest and least values of the

radius vector drawn from 0 to any element of T, we may replace t

outside the integral signs by r/a. Conceive a series of spheres,

with radii ar, 2ar...nar,... described round 0 ,
and let the nth of

these be the first which cuts T. Let S
t ,
S2

... be the areas of the

surfaces of the spheres, beginning with the nth
,
which lie within T;

then

H(3dJS = 7crF(t - nr) S
t + krF [t- (n + 1) r} S

2 + ...

But F (t — nr), F [t — (n + 1) t} . . . are ultimately equal to each

other, and to

*(*-;) '
or (-mt/H);

and ccrS
l
4- arS2 -f ... is ultimately equal to T. Hence we get, for

the part of f which arises from the first of the double integrals,

l_L„
4ttDa\J K a) '

The second of the double integrals is to be treated in exactly the

same way.

To find what the triple integral becomes, let us consider first

only the impulse which was communicated at the beginning of the

time t —m,
where nr lies between the limits rja and r/b

,
and is

not so nearly equal to one of these limits that any portion of the

space T lies beyond the limits of integration. Then we must

write ut for t in the coefficient, and 3 lq
Q
— u

0
becomes ultimately

(311c — V) t F(t— nr), and, as well as r, is ultimately constant in the

triple integration. Hence the triple integral ultimately becomes

(3Uc-V)T
4s7rr

B nr . tF (t — nr),

and we have now to perform a summation with reference to
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different values of n, which in the limit becomes an integration.

Putting nr = t', we have ultimately

t = dt’, Znr . rF (t- m) =f
*
t' F{t- t') dt’.

It is easily seen that the terms arising from the triple integral

when it has to be extended over a part only of the space T vanish

in the limit. Hence we have, collecting all the terms, and express-

ing F
(
t

)

in terms of/ (2),

^ ~ 4irDetrf (
4

a)
+
4

(*

'

+

47rDti

3ik-l' rij

4nrDr3

J rT
dt'

.

.(39).

To get 7] and £ we have only to pass from l
,

l' to m
,
m and

then to n, n. If we take (90, for the axis of x,
and the plane

passing through 00, and the direction of the force for the plane

xz, and put a for the inclination of the direction of the force to

00, produced, we shall have

1=1, m = 0, n = 0, l' = Jc = cos a, m = 0, n = sin 2
;

whence

cos a
r

,J

'

sm
4<7rUb

(40).

In the investigation, it has been supposed that the force began

to act at the time 0, before which the fluid was at rest, so that

f(t)= 0 when t is negative. But it is evident that exactly the

same reasoning would have applied had the force begun to act at

any past epoch, as remote as we please, so that we are not obliged

to suppose f(t) equal to zero when t is negative, and we may even

suppose /(tf) periodic, so as to have finite values from t = — 00 to

t = + 00 .

By means of the formula (39), it would be very easy to write

down the expressions for the disturbance due to a system of forces

acting throughout any finite portion of the medium, the disturbing
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force varying in any given manner, both, as to magnitude and
direction, from one point of the medium to another, as well as

from one instant of time to another.

The first term in f represents a disturbance which is propa-

gated from 0
t
with a velocity a. Since there is no corresponding

term in rj or £ the displacement, as far as relates to this disturb-

ance, is strictly normal to the front of the wave. The first term in

f represents a disturbance which is propagated from O
x
with a

velocity 5, and as far as relates to this disturbance the displace-

ment takes place strictly in the front of the wave. The remaining

terms in f and £ represent a disturbance of the same kind as that

which takes place in an incompressible fluid in consequence of the

motion of solid bodies in it. If/ (t) represent a force which acts

for a short time, and then ceases, f it — t') will differ from zero

only between certain narrow limits of t, and the integral contained

in the last terms of f and f will be of the order r, and therefore

the terms themselves will be of the order r
-2

,
whereas the leading

terms are of the order r~\ Hence in this case the former terms

will not be sensible beyond the immediate neighbourhood of Or
The same will be true if/ (t) represent a periodic force, the mean

value of which is zero. But if/ (t) represent a force always acting

one way, as for example a constant force, the last terms in £ and f

will be of the same order, when r is large, as the first terms.

28. It has been remarked in the introduction that there is

strong reason for believing that in the case of the luminiferous

ether the ratio of a to b is extremely large, if not infinite. Conse-

quently the first term in £, which relates to normal vibrations, will

be insensible, if not absolutely evanescent. In fact, if the ratio of

a to b were no greater than 100, the denominator in this term

would be 10000 times as great as the denominator of the first

term in £. Now the molecules of a solid or gas in the act of com-

bustion are probably thrown into a state of violent vibration, and

may be regarded, at least very approximately, as centres of disturb-

ing forces. We may thus see why transversal vibrations should

alone be produced, unaccompanied by normal vibrations, or at

least by any which are of sufficient magnitude to be sensible. If

we could be sure that the ether was strictly incompressible, we

should of course be justified in asserting that normal vibrations

are impossible.
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29. If we suppose a = oo
,
and f{t) = c sin 27rbt/X, we shall

from (40)

. cAcosa 27T /7j . cA
2 cosa . rrr

£ = .. cos — (ot — r) - j-s
‘kirJJbr A v 4t V Sm

X
C0S

A V
^

(U~\

Tj — 0

csma- V iblll U . 27r /7 . » cX sin a 2tt « .

c\2
sin a . 7rr 27r

+
8tt

3D6V Sm
A

C°S
A (“-0

and we see that the most important term in £ is of the order >

compared with the leading term in £, which represents the tri

versal vibrations properly so called. Hence £, and the second

third terms in f, will be insensible, except at a distance fron

comparable with \ and may be neglected
;
but the existence

terms of this nature, in the case of a spherical wave whose ra<

is not regarded as infinite, must be borne in mind, in ordei

understand in what manner transversal vibrations are compat

with the absence of dilatation or condensation.

30. The integration of equations (18) might have been efifec

somewhat differently by first decomposing the given functions

7
]q , £0 ,

and u
0 ,

vQ ,
w

Q
into two parts, as in Art. 8, and then treal

each part separately. We should thus be led to consider separal

that part of the initial disturbance which relates to a wave of d

tation and that part which relates to a wave of distortion. Eit

of these parts, taken separately, represents a disturbance whicl

not confined to the space T, but extends indefinitely around
Outside T, the two disturbances are equal in magnitude and op
site in sign.

Section III.

Determination of the Law of the Disturbance in a Second£

Wave of Light.

31. Conceive a series of plane waves of plane-polarized li\

propagated in vacuum in a direction perpendicular to a fu

mathematical plane P. According to the undulatory theory
light, as commonly received, that is, including the doctrine
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transverse vibrations, the light in the case above supposed consists

in the vibrations of an elastic medium or ether, the vibrations

being such that the ether moves in sheets, in a direction perpen-

dicular to that of propagation, and the vibration of each particle

being symmetrical with respect to the plane of polarization, and

therefore rectilinear, and either parallel or perpendicular to that

plane. In order to account for the propagation of such vibrations,

it is necessary to suppose the existence of a tangential force, or

tangential pressure, called into play by the continuous sliding of

the sheets one over another, and proportional to the amount of the

displacement of sliding. There is no occasion to enter into any

speculation as to the cause of this tangential force, nor to entertain

the question whether the luminiferous ether consists of distinct

molecules or is mathematically continuous, just as there is no

occasion to speculate as to the cause of gravity in calculating the

motions of the planets. But we are absolutely obliged to suppose

the existence of such a force, unless we are prepared to throw over-

board the theory of transversal vibrations, as usually received, not-

withstanding the multitude of curious, and otherwise apparently

inexplicable phenomena which that theory explains with the ut-

most simplicity. Consequently we are led to treat the ether as an

elastic solid so far as the motions which constitute light are con-

cerned, It does not at all follow that the ether is to be regarded

as an elastic solid when large displacements are considered, such

as we may conceive produced by the earth and planets, and solid

bodies in general, moving through it. The mathematical theories

of fluids and of elastic solids are founded, or at least may be

founded, on the consideration of internal pressures. In the case

of a fluid, these pressures are supposed normal to the common sur-

face of the two portions whose mutual action is considered : this

supposition forms in fact the mathematical definition of a fluid.

In the case of an elastic solid, the pressures are in general oblique,

and may even in certain directions be wholly tangential. The

treatment of the question by means of pressures presupposes the

absence of any sensible direct mutual action of two portions of the

medium which are separated by a small but sensible interval. The

state of constraint or of motion of any element affects the pressures

in the surrounding medium, and in this way one element exerts an

indirect action on another from which it is separated by a sensible

interval.
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Now the absence of prismatic colours in the stars, depending

upon aberration, the absence of- colour in the disappearance and

reappearance of Jupiter’s Satellites in the case of eclipses, and, still

more, the absence of change of colour in the case of certain periodic

stars,' especially the star Algol, shew that the velocity of light of

different colours is, if not mathematically, at least sensibly the

same. According to the theory of undulations, this is equivalent

to saying that in vacuum the velocity of propagation is independ-

ent of the length of the waves. Consequently the direct action of

two elements of ether separated by a sensible interval must be

sensibly if not mathematically equal to zero, or at least must be

independent of the disturbance ;
for, were this not the case, the

expression for the velocity of propagation would involve the length

of a wave. An interval is here considered sensible which is com-

parable with the length of a wave. We are thus led to apply to

the luminiferous ether in vacuum the ordinary equations of motion

of an elastic solid, provided we are only considering those disturb-

ances which constitute light.

Let us return now to the case supposed at the beginning of *

this section. According to the preceding explanation, we must

regard the ether as an elastic solid, in which a series of rectilinear

transversal vibrations is propagated in a direction perpendicular to

the plane P. The disturbance at any distance in front of this

plane is really produced by the disturbance continually transmitted

across it; and, according to the general principle of the superposi-

tion of small motions, we have a perfect right to regard the dis-

turbance in front as the aggregate of the elementary disturbances

due to the disturbance continually transmitted across the several

elements into which we may conceive the plane P divided. Let it

then be required to determine the disturbance corresponding to an

elementary portion only of this plane.

In practical cases of diffraction at an aperture, the breadth of

the aperture is frequently sensible, though small, compared with
the radius of the incident waves. But in determining the law of

disturbance in a secondary wave we have nothing to do with an
aperture; and in order that we should be at liberty to regard the
incident waves as plane all that is necessary is, that the radius of
the incident wave should be very large compared with the wave’s
length, a condition always fulfilled in experiment.
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32. Let 0
±
be any point in the plane P; and refer the medium

to rectangular axes passing through 015 x being measured in the

direction of propagation of the incident light, and £ in the direc-

tion of vibration. Let / (bt — x) denote the displacement of the

medium at any point behind the plane P, x of course being nega-

tive. Let the time t be divided into small intervals, each equal

to t, and consider separately the effect of the disturbance which' is

transmitted across the plane P during each separate interval. The
disturbance transmitted during the interval r which begins at the

end of the time t' occupies a film of the medium, of thickness hr,

and consists of a displacement/^') and a velocity If (bt'). By
the formulae of Section II. we may find the effect, over the whole

medium, of the disturbance which exists in so much only of the

film as corresponds to an element dS of P adjacent to 0 . By
doing the same for each interval t, and then making the number

of such intervals increase and the magnitude of each decrease

indefinitely, we shall ultimately obtain the effect of the disturb-

ance which is continually propagated across the element dS.

Let 0 be the point of the medium at which the disturbance is

required; l, w, n the direction-cosines of O
x
O measured from 0,,

and therefore — Z, — m, — n those of 00
x
measured from 0; and

let 00
x
=-r. Consider first the disturbance due to the velocity of

the film. The displacements which express this disturbance are

given without approximation by (29) and the two other equations

which may be written down from symmetry. The first terms in

these equations relate to normal vibrations, and on that account

alone might be omitted in considering the diffraction of light.

But, besides this, it is to be observed that t in the coefficient of

these terms is to be replaced by r/a. Now there seems little

doubt, as has been already remarked in the introduction, that in

the case of the luminiferous ether a is incomparably greater

than 6, if not absolutely infinite*; so that the terms in question

are insensible, if not absolutely evanescent. The third terms are

insensible, except at a distance from 0
t
comparable with X, as has

been already observed, and they may therefore be omitted if we

suppose r very large compared with the length of a wave. Hence

it will be sufficient to consider the second terms only. In the

* I have explained at full my views on this subject in a paper On the constitution

of the luminiferous ether,
printed in the S2nd volume of the Philosophical Magazine ,

p. 349. [Ante, p. 12.]
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coefficient of these terms we must replace t by rjb
;
we must put

u
0
= 0, vQ =-0, w

0
= &/' (bt-r), write -l, -m, -n for l

}
m, n, and

put q0
= — nw

0 — — nbf' (bt — r). The integral signs are to be

omitted, since we want to get the disturbance which corresponds

to an elementary portion only of the plane P.

It is to he observed that da represents the elementary solid

angle subtended at 0 by an element of the riband formed by that

portion of the surface of a sphere described round 0,
with radius r,

which lies between the plane yz and the parallel plane whose

abscissa is br. To find the aggregate disturbance at 0 correspond-

ing to a small portion, S, of the plane P lying about 0
X ,
we must

describe spheres with radii ...r — 2br, r -br, r
,
r -f br, r 4- 2hr . .

.

,

describing as many as cut S. These spheres cut S into ribands,

which are ultimately equal to the corresponding ribands which lie

on the spheres. For, conceive a plane drawn through 00, per-

pendicular to the plane yz. The intersections of this plane by two
consecutive spheres and the two parallel planes form a quadrilate-

ral, which is ultimately a rhombus
;
so that the breadths of corre-

sponding ribands on a sphere and on the plane are equal, and their

lengths are also equal, and therefore their areas are equal. Hence
we must replace da by r~

2dS
}
and we get accordingly

I
IndS

^TTTf (bt-r), V = ~
mndS
4<7rr

f (bt-r),

r (42).

Since l^+ mij+n^—0, the displacement takes place in a plane
through 0 perpendicular to 0,0. Again, since £ : v :: l : m

, it
takes place in a plane through 0,0 and the axis of z. Hence
it takes place along a line drawn in the plane last mentioned
perpendicular to 00,. The direction of displacement being known,
it remains only to determine the magnitude. Let £ be the dis-
placement, and the angle between 0,0 and the axis of a so that
»=cos <£. Then £ sin 4> will be the displacement in the direction
ot z, and equating this to fin (42) we get

dS
£ ~ 4^7

sm& (bt ~ r) (43).

®e
.
Pf °f

the disturbance due to the successive displace-
o e ms may be got in the same way from (30) and the
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two other equations of the same system. The only terms which it

will be necessary to retain in these equations are those which
involve the differential coefficients of f0> *70 , f0 ,

and p0
in the second

of the double integrals. We must put as before r for bt, and write

r~
2dS for da. Moreover we have for the incident vibrations

f= 0, 97 = 0
,

p=-nf(bt'~x).

To find the values of the differential coefficients which have to be

used in (SO) and the two other equations of that system, we must

differentiate on the supposition that 97 , £ p are functions of r in

consequence of being functions of x, and after differentiation we

must put x = 0, t' = t — rfb. Since d/dr = - l . d/dx, we get

= ~ Inf' (bt - r\

whence we get, remembering that the signs of Z, m, n in (30) have

to be changed,

f— PndS
47JT f (bt — r), V =-

ImndS
f (bt — r),

?=
m-vws

47rr f (bt—r).

The displacement represented by these equations takes place along

the same line as before; and if we put for the displacement,

and write cos 9 for Z, we get

& =S cos 6 sin
(
bt ~ ^ (44)-

33. By combining the partial results obtained in the preceding

article, we arrive at the following theorem.

Let £ = 0, 77 = 0, £=f(bt~x) be the displacements correspond-

ing to the incident light; let O
x
be any point -in the plane P, dS

an element of that plane adjacent to O
x ;

and consider the disturb-

ance due to that portion only of the incident disturbance which

passes continually across dS. Let 0 be any point in the medium
situated at a distance from the point O

x
which is large in compari-

son with the length of a wave
;

let' Oft = r, and let this line make
angles 6 with the direction of propagation of the incident light, or

the axis of x
,
and cj> with the direction of vibration, or the axis of

z. Then the displacement at 0 will take place in a direction per-
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pendicular to O
x
O, and lying in the plane zOft ;

and if be the

displacement at (9, reckoned positive in the direction nearest to

that in which the incident vibrations are reckoned positive,

(1 -f cos 9) sin <pf' (
’bt — r)* (45).

In particular, if

f(bt - x) = c sin (bt — x),

we shall have

(1 + cos 6) sin <j> cos~ (bt — r) (46).
jLrJT A

34. On finding by means of this formula the aggregate dis-

turbance at 0 due to all the elements of the plane P, 0 being

supposed to be situated at a great distance from P, we ought to

arrive at the same result as if the waves had not been broken up.

To verify this, let fall from 0 the perpendicular 00' on the

plane P, and let 00’ or = — p, according as 0 is situated in

front of the plane P or behind it. Through O' draw 0'oc
} O'y,

parallel to O
x
x, O

xy, and let 0’0
1
—r'} Ofi'y' = a>. Then

dS= rdr'dco = rdvdco,

since rs
=jp

8+r/2

,
and p is constant. Let £' sin cf>.

The dis-

placement £' takes place in the plane zOfi ,
and perpendicular to

0
X 0\ and resolving it along and perpendicular to O

x
z, we get for

resolved parts s sin
2

<f> , s sin $ cos
<f>,

of which the latter is estimated

in the direction OM,
where M is the projection of O

t
on O'y'. Let

MOO ' = %, % being reckoned positive when M falls on that side of

O' on which y is reckoned positive
;
then, resolving the displace-

ment along OM parallel to OV, O'y', we get for resolved parts

— s sin <j> cos <f>
cos %, s sin cf> cos sin %. Hence we get for the dis-

placements £, 7] x f at 0

£ sa — s sin
(f>

cos
<f>

cos rj = s sin <j) cos
<f>

sin f= s sin
2

<f>.

Now produce 0'0
1
to 0

2 ,
and refer 0^, 0^, 0/, Ofi2i Ol

O to a

sphere described round O
t
with radius unity. Then zOfi forms a

spherical triangle, right-angled at 0
2 ,
and

z0
2 = l'7r-cd

>
0

2
0 =^|7t + ^ Oz =

<f>,
0z0

2
— \tt +%

* The corresponding expression which I have obtained for sound differs from

this only in having cos 6 in place of sin
<f>,

provided we suppose b to he the velocity/

of propagation of sound, and f to represent a displacement in the direction 0X0.
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whence we get from spherical trigonometry,

cos cj) = — sin 9 sin co, sin
<f>

cos ^ = cos 0,

sin <p sin % = cos 8 tan ^ — sin 6 cos co.

We have therefore

£ = s sin 8 cos 9 sin co
,

tj — — s sin
2 9 sin co cos co,

£ = s (1 — sin
2
0 sin

2
co).

To find the aggregate disturbance at 0
,
we must put for s its

value, and perforin the double integrations, the limits of co being 0

and 2-7T, and those of r being and co . The positive and nega-

tive parts of the integrals which give £ and rj will evidently destroy

each other, and we need therefore only consider £ Putting for s

its value, and expressing 9 in terms of r, we get

f= jr:* JJ(r 4- (r
2
cos

2
co 4-jp

2
sin

2
co) cos^" (bt~r) — ....(47).

ZA A T

Let us first conceive the integration performed over a large area

A surrounding O', which we may afterwards suppose to increase

indefinitely. Perform the integration with respect to r first, put

for shortness F (
r

)

for the coefficient of the cosine under the inte-

gral signs, and let R, a function of co, be the superior limit of r.

We get by integration by parts

JF (r) cos~ (bt — r) dr

“ - F
(
r) 'smy (bt -r) + (A) F'

(
r
)
cos^ (bt- r) + ...

Now the terms after the first must be neglected for consistency’s

sake, because the formula (46) is not exact, but only approximate,

the approximation depending on the neglect of terms which are of

the order A compared with those retained. The first term, taken

between limits, gives

F ( ± p) sinA {bt +p)-^F (R) sin^ (bt - E),

where the upper or lower sign has to be taken according as 0 lies

in front of the plane P or behind it. We thus get from (47)

£=~~ (1 ±l)sin^* (btTp) — £~j F (R) sin (bt — JR) dco.
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When JR becomes infinite, F (JR) reduces itself to cos'
2
oj

}
and the

last term in f becomes

— F-
[ cos

2
co sin (bt— E) dco.

47TJ 0
a

Suppose that no finite portion of the perimeter of A is a circular

arc with O' for centre, and let this perimeter be conceived to ex-

pand indefinitely, remaining similar to itself. Then, for any finite

interval, however small, in the integration with respect to co
1
the

function sin 2ttX'
1
(bt - R) will change sign an infinite number of

times, having a mean value which is ultimately zero, and the limit

of the above expression will be rigorously zero. Hence we get in

the limit

2tt
^=csin-™ (bt—p), or =» 0,

A

according as p is positive or negative. Hence the disturbance

continually transmitted across the plane P produces the same

disturbance in front of that plane as if the wave had not been

broken up, and does n&t produce any back wave, which is what

it was required to verify.

It may be objected that the supposition that the perimeter of

A is free from circular arcs having O' for centre is an arbitrary

restriction. The reply to this objection is, that we have no right

to assume that the disturbance at 0 which corresponds to an area

A approaches in all cases to a limit as A expands, remaining

similar to itself. All we have a right to assert a priori is, that

if it approaches a limit that limit must be the disturbance which
would exist if the wave had not been broken up.

It is hardly necessary to observe that the more general formula

(45) might have been treated in precisely the same way as (40).

35. In the third Volume of the Cambridge Mathematical
Journal

, p. 46, will be found a short paper by Mr Archibald Smith,
of which the object is to determine the intensity in a secondary
wave of light. In this paper the author supposes the intensity
at a given distance the same in all directions, and assumes the
coefficient of vibration to vary, in a given direction, inversely as
the radius of the secondary wave. The intensity is determined
on the principle that when an infinite plane wave is conceived to
be broken up, the aggregate effect of the secondaiy waves must
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be the same as that of the primary wave. In the investigation,

the difference of direction of the vibrations corresponding to the

various secondary waves which agitate a given point is not taken

into account, and moreover a term which appears under the form

cos oo is assumed to vanish. The correctness of the result arrived

at by the latter assumption may be shewn by considerations simi-

lar to those which have just been developed. If we suppose the

distance from the primary wave of the point which is agitated by

the secondary waves to be large in comparison with A, it is only

those secondary waves which reach the point in question in a

direction nearly coinciding with the normal to the primary wave

that produce a sensible effect, since the others neutralize each

other at that point by interference. Hence the result will be

true for a direction nearly coinciding with the normal to the

primary wave, independently of the truth of the assumption that

the disturbance in a secondary wave is equal in all directions,

and notwithstanding the neglect of the mutual inclination of

the directions of the disturbances corresponding to the various

secondary waves. Accordingly, when the direction considered is

nearly that of the normal to the primary wave, cos 0 and sin </>

in (46) are each nearly equal to 1, so that the coefficient of the

circular function becomes cdS (Ar)”
1

,
nearly, and in passing from

the primary to the secondary waves it is necessary to accelerate

the phase by a quarter of an undulation. This agrees with Mr
Smith's results.

The same subject has bejsn treated by Professor Kelland in a

memoir On the Theoretical Investigation of the Absolute Intensity

of Interfering Light
,
printed in the fifteenth Volume of the

Transactions of the Royal Society of Edinburgh
, p. 315. In this

memoir the author investigates the case of a series of plane

waves which passes through a parallelogram in front of a lens,

and is received on a scieen at the focus of the lens, as well as

several other particular cases. By equating the total illumination

on the screen to the area of the aperture multiplied by the illu-

mination of the incident light, the author arrives in all cases at

the conclusion that in the coefficient of vibration of a secondary

wave the elementary area dS must be divided by Ar. In con-

sequence of the employment of intensities, not displacements, the

necessity for the acceleration of the phase by a quarter of an
undulation does not appear from this investigation,

s. n. 19
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.la the investigations of Mr Smith and Professor Kelland, as

well as in the verification of the formula (46) given in the last

article, we are only concerned with that part of a secondary wave

which lies near the normal to the primary. The correctness of

this formula for all directions must rest on the dynamical theory.

36. In any given case of diffraction, the intensity of the

illumination at a given point will depend mainly on the mode of

interference of the secondary waves. If however the incident

light be polarized, and the plane of polarization be altered, every

thing else remaining the same, the mode, of interference will not

he changed, and the coefficient of vibration will vary as sin </>,

so that the intensity will vary between limits which are as 1 to

cos
2
9. If common light of the same intensity be used, the inten-

sity of the diffracted light at the given point will be proportional

to J (1 + cos
2
6).

PART II.

EXPERIMENTS ON THE ROTATION OF THE PLANE OF
POLARIZATION OF DIFFRACTED LIGHT.

Section I.

Description of the Experiments.

If a plane passing through a ray of plane-polarized light, and
containing the direction of vibration, be called the plane of vibra-

tion, the law obtained in the preceding section for the nature of

the polarization of diffracted light, when the incident light is

plane-polarized, may be expressed by saying, that any diffracted

ray is plane-polarized, and the plane of vibration of the diffracted

ray is parallel to the direction of vibration of the incident ray.

Let the angle between the incident ray produced and the diffracted

ray be called the angle of diffraction,
and the plane containing

these two rays the plane of diffraction ; let aif ad be the angles

which the planes of vibration of the incident and diffracted rays

respectively make with planes drawn through those rays parpen-
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dicular to the plane of diffraction, and 6 the angle of diffraction.

Then we easily get by a spherical triangle

tan ad = cos 6 tan av

If then the plane of vibration of the incident ray be made to

turn round with a uniform velocity, the plane of vibration of the

diffracted ray will turn round with a variable velocity, the law

connecting these velocities being the same as that which connects

the sun’s motions in right ascension and longitude, or the motions

of the two axes of a Hook’s joint. The angle of diffraction

answers to the obliquity of the ecliptic in the one case, or the

supplement of the angle between the axes in the other. If we

suppose a series of equidifferent values given to a
i}
such as 0°, 5°,

10°, ...355°, the planes of vibration of the diffracted ray will not be

distributed uniformly, but will be crowded towards the plane

perpendicular to the plane of diffraction, according to the law

expressed by the above equation.

Now the angles which the planes of polarization of the inci-

dent and diffracted rays, (if the diffracted ray prove to be really

plane-polarized,) make with planes perpendicular to the plane of

diffraction can be measured by means of a pair of graduated

instruments furnished with Nicol’s prisms. Suppose the plane of

polarization of the incident light to be inclined at the angles

0°, 5°, 10°..., successively to the perpendicular to the plane of

diffraction
;
then the readings of the instrument which is used as

the analyzer will shew whether the planes of polarization of the

diffracted ray are crowded towards the plane of diffraction or

towards the plane perpendicular to the plane of diffraction. If 'sr,

a be the azimuths of the planes of polarization of the incident and

diffracted rays, both measured from planes perpendicular to the

plane of diffraction, we should expect to find these angles con-

nected by the equation tan a = sec 9 tan ot in the former event,

and tan a = cos 9 tan nr in the latter. If the law and amount of

the crowding agree with theory as well as could reasonably be

expected, some allowance being made for the influence of modify-

ing causes, (such as the direct action of the edge of the diffracting

body,) whose exact effect cannot be calculated, then we shall be

led to conclude that the vibrations in plane-polarized light are

perpendicular or parallel to the plane of polarization, according as

the crowding takes place towards or from the plane of diffraction.

19—2
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In all ordinary cases of diffraction, the light becomes insensible

at such a small angle from the direction of the incident ray pro-

duced that the crowding indicated by theory is too small to be

sensible in experiment, except perhaps in the mean of a very

great number of observations. It is only by means of a fine

grating that we can obtain strong light which has been diffracted

at a large angle. I doubt whether a grating properly so called,

that is, one consisting of actual wires, or threads of silk, has ever

been made which would be fine enough for the purpose. The

experiments about to be described have accordingly been performed

with the glass grating already mentioned, which consisted of a

glass plate on which parallel and equidistant lines had been ruled

with a diamond at the rate of about 1300 to an inch.

Although the law enunciated at the beginning of this section

has been obtained for diffraction in vacuum, there is little doubt

that the same law would apply to diffraction within a homogeneous

uncrystallized medium, at least to the degree of accuracy that we

employ when we speak of the refractive index of a substance,

neglecting the dispersion. This is rendered probable by- the

simplicity of the law itself, which merely asserts that the vibra-

tions in the diffracted light are rectilinear, and agree in direction

with the vibrations in the incident light as nearly as is consistent

with the necessary condition of being perpendicular to the dif-

fracted ray. Moreover, when dispersion is neglected, the same

equations of motion of the luminiferous ether are obtained, on

mechanical theories, for singly refracting media as for vacuum; and

if these equations be assumed to be correct, the law under con-

sideration, which is deduced from the equations of motion, will

continue to hold good. In the case of a glass grating however the

diffraction takes place neither in air nor in glass, but at the

confines of the two media, and thus theory fails to assign exact

values to a. Nevertheless it does not fail to assign limits within

which, or at least not far beyond which, a must reasonably be

supposed to lie
;
and as the values comprised within these limits

are very different according as one or other of the two rival

theories respecting the direction of vibration is adopted, experi-

ments with a glass grating may be nearly as satisfactory, so far as

regards pointing to one or other of the two theories, as experiments

would be which were made with a true grating.

The glass grating was mounted for me by Prof Miller in a
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small frame fixed on a board which rested on three screws, by

means of which the plane of the plate and the direction of the

groo’ves could be rendered perpendicular to the plane of a table on

which the whole rested.

The graduated instruments lent to me by Prof. O’Brien con-

sisted of small graduated brass circles, mounted on brass stands, so

that when they stood on a horizontal table the planes of the circles

were vertical, and the zeros of graduation vertically over the

centres. The circles were pierced at the centre to admit doubly

refracting prisms, which were fixed in brass collars which could be

turned round within the circles, the axes of motion being perpen-

dicular to the planes of the circles, and passing through their

centres. In one of the instruments, which I used for the polarizer,

the circle was graduated to degrees from 0° to 360°, and the collar

carried simply a pointer. To stop the second pencil, I attached a

wooden collar to the brass collar, and inserted in it a Nicol’s

prism, which was turned till the more refracted pencil was extin-

guished. In a few of the latest experiments the Nicol’s prism was

dispensed with, and the more refracted pencil stopped by a screen

with a hole which allowed the less refracted pencil to pass. In the

other instrument, which I used for the analyzer, the brass collar

carried a vernier reading to 5'. In this instrument the doubly

refracting prism admitted of being removed, and I accordingly

removed it, and substituted a Nicol’s prism, which was attached

by a wooden collar. The Nicol’s prism was usually inserted into

the collar at random, and the index error was afterwards deter-

mined from the observations themselves.

The light employed in all the experiments was the sun light

reflected from a mirror placed at the distance of a few feet from

the polarizer. On account of the rotation of the earth, the mirror

required re-adjustment every three or four minutes. The continual

change in the direction of the incident light was one of the chief

sources of difficulty in the experiments and inaccuracy in the

results
;
but lamplight would, I fear, be too weak to be of much

avail in these experiments.

The polarizer, the grating, and the analyzer stood on the same

table, the grating a few inches from the polarizer, and the analyzer

about a foot from the grating. The plane of diffraction was as-

sumed to be parallel to the table, which was nearly the case

;

but the change in the direction of the incident light produced
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continual small changes in the position of this plane. In most

experiments the grating was placed perpendicular to the incident

light, by making the light reflected from the surface go back into

the hole of the polarizer. The angle of diffraction was measured

at the conclusion of each experiment by means of a protractor,

lent to me for the purpose by Prof. Miller. The grating was

removed, and the protractor placed with its centre as nearly as

might be under the former position of the bright spot formed on

the grating by the incident light. The protractor had a pair of

opposite verniers moveable by a rack
;
and the directions of the

incident and diffracted light were measured by means of sights

attached to the verniers. The angle of diffraction in the different

experiments ranged from about 20° to 60°.

The deviation of the less refracted pencil in the doubly. re-

fracting prism of the polarizer, though small, was very sensible,

and was a great source both of difficulty and of error. To under-

stand this, let AB be a ray incident at B on a slip of the surface of

the plate contained between two consecutive grooves, BG a dif-

fracted ray. On account of the interference of the light coming

from the different parts of the slip, if a small pencil whose axis is

AB be incident on the slip, the diffracted light will not be sensible

except in a direction BG, determined by the condition that AB +
BG shall be a minimum, A and G being supposed fixed. Hence
AB, BG must make equal angles with the slip, regarded as a line,

the acute angles lying towards opposite ends of the slip, and there-

fore G must lie in the surface of a cone formed by the revolution

of the produced part of AB about the slip. If AB represent the

pencil coming through the polarizer, it will describe a cone of

small angle as the pointer moves round, and therefore both the

position of the vertex and the magnitude of the vertical angle of

the cone which is the locus of G will change. Hence the sheet of

the cone may sometimes fall above or below the eye-hole of the

analyzer. In such a case it is necessary either to be content to

miss one or more observations, corresponding to certain readings of

the polarizer, or else to alter a little the direction of the incident

light, or, by means of the screws, to turn the grating through a

small angle round a horizontal axis. The deviation of the light

which passed through the polarizer, and the small changes in

the direction of the incident light, 1 regard as the chief causes

of error in my experiments. In repeating the experiments so
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as to get accurate results, these causes of error would have to

be avoided.

At first 1 took for granted that the instrument-maker had

inserted the doubly refracting prism in the polarizer in such a

manner that the plane of polarization of the less refracted pencil

was either vertical or horizontal, (the instrument being supposed

to stand on a horizontal table,) when the pointer stood at 0°, having

reason to know that it was not inserted at random
;
and having

determined which, by an exceedingly rough trial, I concluded it

was vertical. Meeting afterwards with some results which were

irreconcileable with this supposition, I was led to make an actual

measurement, and found that the plane of polarization was vertical

when the pointer stood at 25°. Consequently 25° is to be regarded

as the index error of the polarizer, to be subtracted from the

reading of the pointer. The circumstance just mentioned accounts

for the apparently odd selection of values of zjt in the earlier

experiments, the results of which are given in the tables at the end

of this section.

On viewing a luminous point or line through the grating, the

central colourless image was seen accompanied by side spectra,

namely, the spectra which Fraunhofer called Spectra of the second

class. After a little, these spectra overlapped in such a manner

that the individual spectra could no longer be distinguished, and

nothing was to be seen but two tails of light, which extended, one

on each side, nearly 90° from the central image. On viewing the

flame of a spirit lamp through the grating, the individual spectra

of the second class could be seen, where, with sun-light, nothing

could be perceived but a tail of light. The tails themselves were

not white, but exhibited very broad impure spectra
;
about two

such could be made out on each side. These spectra are what

were called spectra of the first class by Fraunhofer, who shewed

that their breadth depended on the smaller of the two quantities,

the breadth of a groove, and the breadth of the polished interval

between two consecutive grooves. In the grating, the breadth of

the grooves was much smaller than the breadth of the intervals

between*.

* On viewing the grating under a microscope, the grooves were easily seen to he

much narrower than the intervals between; their breadth was too small to be

measured. On looking at the flame of a spirit lamp through the grating, I counted

sixteen images on one side, then several images were too faint to be seen, and
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In the experiments, the diffracted light observed belonged to a

bright, though not always the brightest, part of a spectrum of the

first class. The compound nature of the light was easily put in

evidence by placing a screen with a vertical slit between the

grating and the eye, and then viewing the slit through a prism

with its edge vertical*. A spectrum was then seen which con-

sisted of bright bands separated by dark intervals, strongly resem-

bling the appearance presented when a pure spectrum is viewed

through a pinhole, or narrow slit, which is half covered by a plate

of mica, placed on the side affwhich the blue is seen. At a con-

siderable angle of diffraction as many as 15 or 20 bands might

be counted.

In the first experiment the grating was placed with its

plane perpendicular to the light which passed through the pola-

rizer, the grooved face being turned from the polarizer. The

light observed was that which was diffracted at emergence

from the glass. It is only when the eye is placed close to

the grating, or when, if the eye be placed a few inches off, the

whole of the grating is illuminated, that a large portion of a tail of

light can be seen at once. When only a small portion of the

grating is illuminated, and the eye is placed at the distance of

several inches, as was the case in the experiments, it is only a

small portion of a tail which can enter the pupil. The appearance

presented is that of a bright spot on the grooved face of the glass.

The angle of diffraction in the first experiment was large, 57° 5' by

measurement. Besides the principal image, or bright spot, a row

of images were seen to the left: the regularly transmitted light

lay to the right, right and left being estimated with reference to

the position of the observer. These images were due to internal

diffraction and reflection, as will be better understood further on.

further still the images again appeared, though they were fainter than before.

I estimated the direction of zero iHumination to be situated about the eighteenth

image. If we take this estimation as correct, it follows from the theory of these

gratings that the breadth of a groove was the eighteenth part of the interval

between any point of one groove and the corresponding point of its consecutive, an
interval which in the case of the present grating was equal to the l-1300th part of

an inch. Hence the breadth of a groove was equal to the l~2S400th part of an
inch.

* To separate the different spectra, Fraunhofer used a small prism with an
angle of about 20°, fixed with its edge horizontal in front of the eye-piece of the

telescope through which, in his experiments, the spectra were viewed.
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They were separated by small angles, depending on the thickness

of the glass, but sufficient to allow of one image being observed by

itself. The observations were confined to the principal or right-

hand image.

In the portion of a spectrum of the first class which was

observed there was a predominance of red light. In most posi-

tions of the pointer of the polarizer the diffracted light did not

wholly vanish on turning round the analyzer, but only passed

through a minimum. In passing through the minimum the light

rapidly changed colour, being blue at the minimum. This shews

that the different colours were polarized in different planes, or

perhaps not strictly plane-polarized. Nevertheless, as the intensity

of the light at the minimum was evidently very small compared

with its intensity at the maximum, and the change of colour was

rapid, it is allowable to speak in an approximate way of the plane

of polarization of the diffracted light, just as it is allowable to

speak of the refractive index of a substance, although there is

really a different refractive index for each different kind of light.

It was accordingly the angular position of the plane which was the

best representative of a plane of polarization that I sought to

determine in this and the subsequent experiments.

In the first experiment the plane of polarization of the dif-

fracted light was determined by six observations for each angle at

which the pointer of the polarizer was set. This took a good deal

of time, and increased the errors depending on changes in the

direction of the light. Accordingly, in a second experiment, I

determined the plane of polarization by single observations only,

setting the pointer of the polarizer at smaller intervals than

before. Both these experiments gave for result that the planes

of polarization of the diffracted light were distributed very

nearly uniformly. This result already points very decidedly

to one of the two’ hypotheses respecting the direction of

vibration. For according to theory the effect of diffraction alone

would be, greatly to crowd the planes either in one direction or in

the other. It seems very likely that the effect of oblique emer-

gence alone should be to crowd the planes in the manner of

refraction, that is, towards the perpendicular to the plane of dif-

fraction. If then we adopt Fresnel’s hypothesis, the two effects

will be opposed, and may very well be supposed wholly or nearly

to neutralize each other. But if we adopt the other hypothesis we
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shall be obliged to suppose that in the oblique emergence from the

crlass or in something else, there exists a powerful cause of crowd-

ing towards the plane of diffraction, that is, in the manner of re-

flection sufficient to neutralize the great crowding in the contrary

direction produced by diffraction, which certainly seems almost

The nearly uniform distribution of the planes of polarization of

the diffracted light shews that the two streams of light, polarized

in and perpendicular to the plane of diffraction respectively, into

which the incident light may be conceived to be decomposed, were

diffracted at emergence from the glass in very nearly the same

proportion. This result appeared to offer some degree of vague

analogy with the depolarization of light produced by such sub-

stances as white paper. This analogy, if borne out in other cases,

might seem to throw some doubt on the conclusiveness of the

experiments with reference to the decision of the question as to

the direction of the vibrations of plane-polarized light. For the

deviation of the light from its regular course might seem due

rather to a sort of scattering than to regular diffraction, though

certainly the fact that the observed light was very nearly plane-

polarized does not at all harmonize with such a view. Accord-

ingly, I was anxious to obtain a case of diffraction in winch the

planes of polarization of the diffracted light should be decidedly

crowded one way or other. Now, according to the explanation

above given, the approximate uniformity of distribution of the

planes of polarization in the first two experiments was due to

the antagonistic effects of diffraction, (according to Fresnel's

hypothesis respecting the direction of vibration), and of oblique

emergence from the glass, or irregular refraction, that is, refraction

produced wholly by diffraction. If this explanation be correct,

a very marked crowding towards the plane of diffraction ought
to be produced by diffraction at reflection, since diffraction

alone and reflection alone would crowd the planes in the same
manner.

To put this anticipation to the test of experiment, I placed the
grating with its plane perpendicular to the incident light, and the
grooved face towards the polarizer, and observed the light which
was diffracted at reflection. Since in this case there would be no
crowding of the planes of polarization in the regularly reflected
light, any crowding which might be observed would be due either
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to diffraction directly, or to the irregular reflection due to diffrac-

tion, or, far more probably, to a combination of the two.

The experiments indicated indeed a marked crowding towards

the plane of diffraction, but the light was so strong at the mini-

mum, for most positions of the pointer of the polarizer, that the

observations were very uncertain, and it was evidently only a

rough approximation to regard the diffracted light as plane-pola-

rized. The reason of this was evident on consideration. Of the

light incident on the grating, a portion is regularly reflected,

forming the central image of the system of spectra produced by

diffraction at reflection, a portion is diffracted externally at such

an angle as to enter the eye, a small portion is scattered, and the

greater part enters the glass. Of the light which enters the glass,

a portion is diffracted internally at such an angle that after regular

reflection and refraction it enters the eye, a portion diffracted at

other angles, but the greater part falls perpendicularly on the

second surface. A portion of this is reflected to the first surface,

and of the light so reflected a portion is diffracted at emergence

'at such an angle as to enter the eye. Thus there are three princi-

pal images, each formed by the light which has been once diffracted

and once reflected, the externally diffracted light being considered

as both diffracted and reflected, namely, one which has been dif-

fracted internally, and then regularly reflected and refracted, a

second in which the light has been, regularly refracted and reflected,

and then diffracted at emergence, and a third in which the light

has been diffracted externally. Any other light which enters the

eye must have been at least twice diffracted, or once diffracted and

at least three times reflected, and therefore will be comparatively

weak, except perhaps when the angle of incidence, or else the

angle of diffraction, is very large. Now when the grating is per-

pendicular to the incident light the second and third of the

principal images are necessarily superposed; and as they might be

expected to be very differently polarized, it was likely enough that

the light arising from the mixture of the two should prove to be

very imperfectly polarized.

To separate these images, I placed a narrow vertical slit in

front of the grating, between it and the polarizer, and inclined

the grating by turning it round a vertical axis so that the normal

fell between the polarizer and the analyzer. As soon as the

grating was inclined, the image which had been previously
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observed separated into two, and at a certain inclination the

three principal images were seen equidistant. The middle image,

which was the second of those above described, was evidently

the brightest of the three. The three images were found to be

nearly if not perfectly plane-polarized, but polarized in different

planes. The third image, and perhaps also the first, did not

wholly vanish at the minimum. This might have been due

to some subordinate image which then appeared, but it was more

probably due to a real defect of polarization.

The planes of polarization of the side images, especially the

first, were greatly crowded towards the plane of diffraction, or,

which is the same, the plane of incidence. Those of the middle

image were decidedly crowded in the same direction, though

much less so than those of the side images. The light of the

first and second images underwent one regular refraction and

one regular reflection besides the diffraction and the accompany-

ing irregular refraction. The crowding of the planes of polari-

zation in one direction or the other produced by the regular

refraction and the regular reflection can readily be calculated

from the known formulae*, and thus the crowding due to diffrac-

tion and the accompanying irregular refraction can he deduced

from the observed result.

The crowding of the planes of polarization of the third image

is due solely to diffraction and the accompanying irregular

reflection. The crowding in one direction or the contrary, ac-

cording as one or other hypothesis respecting the direction of

vibrations is adopted, is readily calculated from the dynamical

theory, and thus is obtained the crowding which is left to he

attributed to the irregular reflection. In the absence of an exact

theory little or no use can be made of the result in the way of

confirming either hypothesis; but it is sufficient to destroy the

vague analogy which might have been formed between the effects

of diffraction and of irregular scattering.

The crowding of the planes of polarization of the middle

image, after the observations had been reduced in the manner
which will be explained in the next section, appeared somewhat

* It is here supposed that the regularly reflected or refracted light which forms

the central colourless image belonging to a system of spectra is affected as to its

polarisation in the same way as if the surface were free from grooves.
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greater than was to have been expected from the first two

experiments. This led me to suspect that the crowding in the

manner of reflection produced by diffraction accompanying the

passage of light from air, across the grooved surface, into the

glass plate, might be greater than the crowding had proved to

be which was produced by diffraction accompanying the passage

from glass, across the grooved surface, into air. I accordingly

placed the grating with its plane perpendicular to the incident

light, and the grooved face toivards the polarizer, and placed the

analyzer so as to receive the light which was diffracted in passing

across the first surface, and then regularly refracted at the second.

I soon found that the planes of polarization were very decidedly

crowded towards the plane of diffraction, and that, notwithstand-

ing the crowding in the contrary direction which must have been

produced by the regular- refraction at the second surface of the

plate, and the crowding, likewise in the contrary direction, which

might naturally be expected to result from the irregular refraction

at the first surface, considered apart from diffraction. This result

seemed to remove all doubt respecting the hypothesis as to the

direction of vibration to which the experiments pointed as the

true one.

On account of the decisive character of the result just men-

tioned, I took several sets of observations on light diffracted in

this manner at different angles. I also made two more careful

experiments of the same nature as the first two. The result

now obtained was, that there was a very sensible crowding

towards the plane of diffraction when the grooved face was turned

from the polarizer, although there was evidently a marked differ-

ence between the two cases, the crowding being much less than

when the grooved face was turned towards the polarizer. Even

the first two experiments, now that I was aware of the index

error of the polarizer, appeared to indicate a small crowding in

the same direction.

Before giving the numerical results of the experiments, it may
be as well to mention what was observed respecting the defect

of polarization. I would here remark that an investigation of

the precise nature of the diffracted light was beside the main

object of my experiments, and only a few observations were taken

which belong to such an investigation. In what follows, ot

denotes the inclination of the plane of polarization of the light
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incident on the grating to a vertical plane passing through the

ray, that is, to a plane perpendicular to the plane of diffraction.

It is given by the reading of the pointer of the polarizer corrected

for the index error 25°, and is measured positive in the direction

of revolution of the hands of a watch placed with its back towards

the incident light.

Whether the diffraction accompanied reflection or refraction,

external or internal, the diffracted light was perfectly plane-

polarized when -or had any one of the values 0°, 90°, 180°, or

270°. The defect of polarization was greatest about 45° from any

of the above positions. When the diffracted light observed was

red or reddish, on analyzation a blue light was seen at or near

the minimum; when the diffracted light was blue or blueish,

a red light was seen at or near the minimum. When the angle

of diffraction was moderately small, such as 15° or 20°, the defect

of polarization was small or insensible; when the angle of

diffraction was large, such as 50° or 60°, the defect of polarization

was considerable. For equal angles, of diffraction, the defect of

polarization was much greater when the grooved face was turned

towards the polarizer than when it was turned in the contrary

direction. By the term angle of diffraction,
as applied to the

case in which the grooved face was turned towards the polar-

izer, is to be understood the angle measured in air, from which

the angle of diffraction within the glass may be calculated, from

a knowledge of the refractive index.

The grating being placed perpendicularly to the incident light,

with the grooved face towards the polarizer, the light diffracted at

a considerable angle, (59° 52' by measurement,) to the left of the

regularly transmitted light was nearly white. When the pointer

of the polarizer stood at 70°, so that w = -f 45°, on turning the

Nicol’s prism of the analyzer in the positive direction through the

position of minimum illumination, the light became in succession

greenish yellow, blue, plum colour, nearly red. When m was
equal to — 45°, the same appearance was presented on reversing

the direction of rotation. Since the colours appeared in the order

blue, red, when tsr = + 45°, and in the order red, blue, when
cr= — 45°, the analyzer being in both cases supposed to turn in the

direction of the hands of a watch, the deficiency of colour took

place in the order red, blue, when tsr = 4- 4

5

a
,
and in the order blue,

red, when tar = — 45°. Hence the planes of polarization, or approxi-
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mate polarization, of the blue were more crowded towards the

plane of diffraction than those of the red.

On placing a narrow slit so as to allow a small portion only of

the diffracted light to pass, and decomposing the light by a prism,

in the manner already described, so as to get a spectrum consisting

of bright bands with dark intervals, and then analyzing this spec-

trum with a Nicofs prism, it was found that at a moderate angle

of diffraction all the colours were sensibly plane-polarized, though

the planes of polarization did not quite coincide. At a large angle

of diffraction the bright part of the spectrum did not quite dis-

appear on turning round the Nicofs prism, while the red and blue

ends, probably on account of their less intensity, appeared to be

still perfectly plane-polarized, though not quite in the same plane.

On treating in the same manner the diffracted light produced

when the grooved face of the glass plate was turned from the

polarizer, all the colours appeared to be sensibly plane-polarized.

In the former case the light of the brightest part of the spectrum

was made to disappear, or nearly so, by using a thin plate of mica

in combination with the Nicofs prism, which shews that the defect

of plane polarization was due to a slight elliptic polarization.

The numerical results of the experiments on the rotation of the

plane of polarization are contained in the following table. In this

table 'cr is the reading of the polarizer corrected for the index

error 25°. A reading such as 340° is entered indifferently in the

column headed as +315° or —45°, that is, 340° — 25° or

— (360° — 340°*) — 25°. a is the reading of the analyzer, determined

by one or more observations. The analyzer was graduated only

from — 90° to -I- 90°, and any reading such as — 20° is entered

indifferently as —20°, +160°, or 4-340°, being entered in such a

manner as to avoid breaking the sequence of the numbers. On
account of the light left at the minimum, the determination of a

was very uncertain when the angle of diffraction was large, except

when 'kt had very nearly one of the values 0°, 90°, 180°, or 270°.

In the most favourable circumstances the mean error in the deter-

mination of a was about a quarter of a degree. In some of the

experiments a red glass was used to assist in rendering the obser-

vations more definite. This had the advantage of stopping all

rays except the red, but the disadvantage of considerably diminish-

ing the intensity of the light. The minutes in the given value of

0, the angle of diffraction, cannot be trusted
;
in fact, during any
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experiment 6 was liable to changes to at least that extent in con-

sequence of the changes in the direction of the light. The same

remark applies to i, the angle of incidence, in experiments 11 and

12. In these experiments the three principal images already

described were observed separately. The angle of diffraction is

measured from the direction of the regularly reflected ray, so that

% is the angle of incidence, and i -f 6 the angle of reflection, or, in

the case of the images which suffered one internal reflection, the

angle of emergence.

The eleven experiments which are not found in the following

tables consist of five on diffraction by reflection, which did not

appear worth giving on account of the superposition of different

images
;
one on diffraction by refraction, to which the same remark

applies, the grating having been placed at a considerable distance

from the polarizer, so that the spot illuminated was too large to

allow of the separate observation of different images; one on

diffraction by reflection, in which the grating was placed perpen-

dicularly to the incident light, with the grooved face turned from

the polarizer, but the errors of observation, though much smaller

than the whole quantity to be observed, were so large on account

of the large angle of diffraction, (about 75°,) with which the obser-

vations were attempted, that the details are not worth giving
;
one

on diffraction by refraction, in which the different observations

were so inconsistent that the experiment seemed not worth reduc-

ing; one which was only just begun; and two qualitative experi-

ments, the results of which have been already given. I mention

this that I may not appear to have been biassed by any particular

theory in selecting the experiments of which the numerical results

are given.

The following remarks relate to the particular experiments

:

No. 1. In this experiment each value of a was determined by

six observations, of which the mean error* ranged from about 15'

* The difference between each individual observation and the mean of the six is

regarded as the error of that observation, and the mean of these differences taken

positively is what is here called the mean error. When two observations only are

taken, the mean error is the same thing as the semi-difference between the observa-

tions. Since, for a given position of the pointer of the polarizer, the readings

of the analyzer were -usually taken one immediately after another, the mean error

furnishes no criterion by which to judge of the errors produced by the small

changes in the direction of the light incident on the grating, but only of those

which arise from the vagueness, of the object observed. The reader will be much
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to 55'. So far the experiment was very satisfactory, hut it was

vitiated by changes in the direction of the light, sufficient care not

having been taken in the adjustment of the mirror.

No. 2. a determined by single observations.

No. 13. a determined by two observations at least, of which

the mean error ranged from about 10' to nearly 1°, but was usually

decidedly less than 1°. At and about the octants, that is to say,

when ur was nearly equal to 45°, or an odd multiple of 45°, the

light was but very imperfectly polarized in one plane.

No. 14. a determined by two observations. Marked in note

book as “ a very satisfactory experiment.” The mean of the mean
errors was only IT.

No. 15. a determined by three observations at least. The
light was very imperfectly polarized, except near the standard

points, that is to say when w was equal to 0° or 90°, or a multiple

of 90°. This rendered the observations very uncertain. About

the octants the mean error in a set of observations taken one

immediately after another amounted to near 2°.

No. 17. a determined by two observations. The light was

very imperfectly polarized, except near the standard points. Yet

the observations agreed very fairly with one another. The mean
of the mean errors was 25', and the greatest of them not quite 1°.

No. 18. a determined by two observations, which, generally

speaking, agreed well with one another. For ?ar = — 90° and

-or = + 225° the light observed was rather scattered than regularly

diffracted, the sheet of the cone of illumination having fallen above

or below the hole of the analyzer.

No. 21. a determined by two observations at least. In this

experiment the polarizer was covered with red glass.

No. 22. a determined by two observations. Marked in note

book as “a very satisfactory experiment, though the light was not

perfectly polarized.”

No. 23. a determined by two observations at least. The hole

in a screen placed between the polarizer and the grating was

covered with red glass. This appears to have been a good experi-

ment.

better able to judge of the amount of probable error from all causes after examining

the reduction of the experiments given in the next section.

20s. II.
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No. 11. ol determined by two observations, which agreed well

with one another. In the table, ol (1), a (2), a (3) refer respec-

tively to the first, second, and third of the three principal images

already mentioned. In this experiment the polarizer was reversed,

that face being turned towards the mirror which in the other

experiments was turned towards the grating, which is the reason

why a and -sr increase together, although the light observed

suffered one reflection. The same index error as before, namely

25°, is supposed to belong to the polarizer in its reversed position.

No. 12. a determined by three observations. The largeness

of the angle of diffraction rendered the determination of a very

uncertain.

TABLE I.

Experiment, No. 1.

* Grooved face from
Polarizer.

0=57°5\

-115°
- m°
- 70°
- 47!°
- 25°
-
4- 20°

4 42|o

4- 65°

- 6°52'

+ 14°51'

+ 37°51'

+ 61° 5'

4 82°54'

+ 106°46'

7*r a

No. 2, continued.

- 5° + 20»20'

4 5° 4 30°55'

-f 15° 4 40°55'

4 25° 4 50°45'

4 35° + 61 °45'

+ 45° + 70°55'

4 55° 4 82°15'

Experiment, No. 2.

Grooved face from
Polarizer.

0= 5Q°23'.

+ 10015'

Experiment, No. 13.

Grooved face towards
Polarizer.

0=39°5O'.

- 60° - 6° 5'

- 50® + 4°53'

- 40° + 15"52'

- 30° + 25°

- 20° + 33°25'

- 10° + 46« 5'

0° + 56°35'

+ 10" + 67"50'

+ 20° + 76*58'

+ 30° + 87°55'

+ 40° + 99°27'

+ 50° + 108°30'

+ 60° + 120°35'

+ 70° +129° 2'

+ 80° + 137°42'.

+ 90° +146°57'

Experiment, No. 14.

Grooved face from
Polarizer.

0=29057'.

- 50* + 22°25'

- 40« + 31°15'

- 30° + 41°40'

- 20° + 51055'

- 10" + 62»37'

0« + 71°10'

+ 10" + 81°47'

+ 20« + 93047'

+ 30° +103010'

+ 40° +113°15'

+ 50° +122»42'

+ 60» +132042'

+ 70" +143"
+ 80" +152047'

+ 90° +161057'

+ 100" - +171052'

+ 110° +182052'

+ 120" +191»47'

+ 130" + 202*12'

+ 140° +211042'

Experiment, No. 15.

Grooved face towards
Polarizer.

0 = 59°52'.

0° - 68°10/

-10° - 81°

- 20° ~ 92°23'

No. 15, continued.

- 60° - 140°29'

- 70° — 148°18'

- 80° ~152°50'
- 90° - 158°30'

Experiment, No. 17.

Grooved face towards
Polarizer.

0=5O»45'.

- 90° + 77°15'

- 80" + 85°30'

- 70" + 93012'

- 60» +101»15'
- 50° +109047'
- 40° +117"12'
- 30" +129057'

Experiment, No. 18.

Grooved face towards
Polarizer.

0=21"39'.

- 90" -103023'
- 45° - 59°53'

0" - 12°58'

+ 45" + 33037'

+ 90° + 77»27'

+ 135° +120" 2
'

+ 180° +167°57'
+225° +21401O'
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Table I. (continued).

Experiment, No. 21.

Grooved face towards
Polarizer.

Bed glass used.

0==28°26*,

- 90° - 29°
- 750 - 16° 2'

- 60° - 2°12'

- 45° + 12°35'

- 30° + 27°52'

- 15° + 44Q47*

0° + 61°40'

+ 15° + 78°25'

+ 30° + 92°18'

+ 45° + 107°25'

+ 60° +122030'

+ 75° + 137°

+ 90° + 151°32'

Experiment, No. 22.

Grooved face from
Polarizer.

0=55°38'.

trr

l

a ZT «(D «(2) a (3)

No. 22, continued. Experiment, No. 11.

-135“
|

- 140°25' i =14<>50': i9= 22»30/

-120“
!

~124°45'
-105° - 110°40' -105“ ' -113“35' -117°50'
- 90* - 96°55' - 85° -103° 5' -101° - 102°20'
- 75° - 83°32' - 65° - 90° - 83° 5' - 89a

- 60° - 69° 7' - 45° - 78°40' - 63“55' - 74°50'

- 45° t 54°50' - 25° - 58°50' - 44° - 53°19'
- 30° - 38055' - 5° - 25“ 5' - 21°10' - 23°10'
- 15° - 22Q50' + 15° + 13°15' + 1°25' + 7°55'

1+ 35° + 38“35' + 24° 5' + 320

Experiment, No. 23. 1
+ 5.5° + 53°50' + 43“10' + 51°30'

Experiment, No. 12.

i=9°l' ;
<9=53°39'.

- 25“ + 5035' - 32° - 13045'
- 45° + 150 - 9°40/ + 20

- 90° + 26°15' + 26»15' + 26°15'
-.1350 + 34Q30' + 65“ + 51“15'

GrQQved faoe towards
Polarizer.

Bed glass used.

0= 54053 '.

0Q - 6»30'

+ 150 + 11° 5'

+ 30° 4- 27°55'

+ 45° + 42^30'

+ 60° + 58«22'

+ 750 + 71° 5'

+ 90° + 83022'

+ 1050 4 96°12'

+ 120° +108030'

+ 135° +122Q45'

Section II.

Discussion of the numerical residts of the eooperiments
,
with

reference to theory.

According to the known formulae which express the laws of the

rotation of the plane of polarization of plane-polarized light which

has undergone reflection or refraction at the surface of a trans-

parent uncrystallized medium, if ©, a! be the azimuths of the

planes of polarization of the incident and reflected or refracted

light, both measured from planes perpendicular to the plane of

incidence, they are connected by the equation

tan cl —m tan vr (48),

where m is constant, if the position of the surface and the direc-

tions of the rays be given, but is a different constant in the two

cases of reflection and refraction. According to the theory de-

20—2
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veloped in this paper, the same law obtains in the case of diffrac-

tion in air, or even within an uncrystallized medium, but m has a

value distinct from the two former. It seems then extremely

likely that the same law should hold good in the case of that

combination of diffraction with reflection or refraction which exists

when the diffraction takes place at the common surface of two

transparent uncrystallized media, such as air and glass. If this be

true, it is evident that by combining all the observations belonging

to one experiment in such a manner as to get the value of m which

best suits that experiment, we shall obtain the crowding of the

planes of polarization better than we could from the direct obser-

vations, and we shall moreover be able in this way easily to

compare the results of different experiments. It seems reasonable

then to try in the first instance whether the formula (48) will

represent the observations with sufficient accuracy.

In applying this formula to any experiment, there are two

unknown quantities to be determined, namely, m, and the index

error of the analyzer. Let e be this index error, so that a = ol 4- e.

The regular way to determine e and m would no doubt be to

assume an approximate value e
x
of e, put e = e

x + Ae
x ,
where Ae, is

the small error of e
x ,

form a series of equations of which the

< type is

tan (a — e
x)
— sec

2
(a — e

x)
Ae

x
= m tan ct,

and then combine the equations so as to get the most probable

values of Ae
x
and m. But such a refinement would be wholly

unnecessary in the case of the present experiments, which are

confessedly but rough. Moreover e can be determined with accu-

racy, except so far as relates to errors produced by changes in the

direction of the light, by means of the observations taken at the

standard points, the light being in such cases perfectly polarized.

By accuracy is here meant such accuracy as experiments of this

sort admit of, where a set of observations giving a mean error of a

quarter of a degree would be considered accurate. Besides, when-
ever the values of •cr selected for observation are symmetrically

taken with respect to one of the standard points, a small error in €

would introduce no sensible error into the value of m which would
result from the experiment, although it might make the formula

appear in fault when the only fault lay in the index error.

Accordingly I have determined the index error of the analyzer

in a way which will be most easily explained by an example.
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Suppose the values of a to have been determined by experiment

corresponding to the following values of — 15°, 0°, 4 15°,. .. 4 75°,

4 90°, 4 105°. The value of a for = 0°, and the mean of the

values for — 15° and nr = + 15°, furnish two values of e; and the

value of a for nr = 4- 90°, and the mean of the values for nr = -f 75°

and nr = + 105°, furnish two values of e4 90°. The mean of the

four values of e thus determined is likely to be more nearly

correct than any of them. In some few experiments no two

values of nr were symmetrically taken with respect to the stand-

ard points. In such cases I have considered it sufficient to take

proportional parts for a small interval. Thus if av a
2
be the

readings of the analyzer for nr = — 10°, nr =4 5°, assuming

oq = e — 10° — 2x, a
2
= e 4 5° 4 x, we get 2x = a

2
— of

x
— 15°,

whence e,
which is equal to a

2
— 5° — x, is known. The index

error of the analyzer having been thus determined, it remains to

get the most probable value of m from a series of equations of the

form (48). For facility of numerical calculation it is better to put

this equation under the form

logm •= log tan o! - log tan nr (49),

where it is to be understood that the signs of a and nr are to be

changed if these angles should lie between 0 and — 90°, or their

supplements taken if they should lie between 4 90° and 4 180°.

Now the mean of the values of log m determined by the several

observations belonging to one experiment is not at all the most

probable value. For the error in log tan cl produced by a small

given error in a' increases indefinitely as a approaches indefinitely

to 0° or 90°, so that in this way of combining the observations an
infinite weight would be attributed to those which were taken

infinitely close to the standard points, although such observations

are of no use for the direct determination of log m, their use being

to determine e. Let a 4 Aa' be the true angle of which a is the

approximate value, a

'

being deduced from the observed angle a

corrected for the assumed index error e. Then, neglecting (Aa')2
,

we get for the true equation which ought to replace (49),

, , . . 2ifAa' .

logm = log tan a 4 ——-tt — log tan «r,

M being the modulus of the common system of logarithms. Since

the effect of the error Aa is increased by the division by sin 2 a', a

quantity which may become very small, in combining the equations
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such as (49) I have first multiplied the several equations by

sin 2a
,
or the sine of 2 (a - e) taken positively, and then added

together the equations so formed, and determined log m from the

resulting equation* [Perhaps it would have been better to have

used for multiplier sin
2
2a', which is what would have been given

by the rule of least squares, if the several observations be supposed

equally liable to error; but on the other hand the use of sin 2a' for

multiplier instead of sin
2
2a' has the effect of diminishing the

comparative weight of the observations taken about the octants,

where, in consequence of the defect of polarization, the observa-

tions were more uncertain.

The following table contains the result of the reduction of the

experiments in the way just explained. The value of e used in

the reduction, and the resulting value of logm, are written down

in each case. The second column belonging to each experiment

gives the value of a'—zy calculated from (49) with the assumed

value of log m, and is put down for the sake of comparison with

the value of a — zr deduced from the difference, a — zr, of the

observed angles a, zr, corrected for the assumed index error e. In

the table, the experiments are arranged in classes, according to

their nature, and those belonging to the same class are arranged

according to the values of 0. The first three experiments in the

table relate to diffraction at refraction, in which the grooved face

of the grating was turned from the polarizer, the next six to

diffraction at refraction, in which the grooved face was turned
towards the polarizer, and the last two to the experiments in
which the grating was a little inclined, and the three principal
images were observed. The result of Experiment No. 1, is here
given separately, on account of the different values of zr there
employed.

Experiment No. 1. 8 = 5'fV; assumed index error e = 40°5'.

zr
QL — 1ST

-115° — 1°46'

-92i°
-70”"

- 0°31'

-47£° + 0"33'

-25° — 0“14'

. + 0“16'

+ 20" + 1“

+ 42|° + 0®li>'

+ 63“ + 1*41'
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The values of o! for ur = ~ 115° and us = 4- 65° ought to differ by
180°, whereas they differ by 3°27' more. This angle is so large

compared with the angles cl — us given just above, that it seems

best to reject the experiment. The experiment is sufficient how-
ever to shew that the crowding of the planes of polarization, be it

in what direction it may, is very small. On combining all the

observations belonging to this experiment in the manner already

described, a small positive value of logra, namely *002, appeared

to result. This value, if exact, would indicate an extremely small

crowding in the manner of reflection.

TABLE II.

Experiment, No. 14.

0=29°57'

e=+72°23'

logm= + *009

Experiment, No. 2.

0 = 5O°23'

+ 24°12'

logm = + *010

0! — us a — us

US calc. obs. diff. us calc. obs. diff.

- 50° -0°*6 0°'0 + 0°*6 _ 1050 + 0«-3 -00,3 -0°*6

- 40° -00,6 -1°-1 -0°*5 950 + 00-1 - 0°*7 -0°-8

- 30° -0°-5 -0°-7 _0°-2 - 85° -o°-i -l°-5 -10-4

- 20° -0°*4 -0°-5 -0“-l - 75° -0«-3 -10-8 - 1°*5

- 10° -0°-2 + 0°-2 + 0°-4 - 65° -0°*5 - 1°*5 -l°-0
0° 0°-0 -l°-2 -l»-2 — 55° -0°*6 + O0,4 + 1°*0

+ 100 +0°-2 - 0 0,6 - 0°*8 - 45° -0°*7 -0°*4 + 0°-3

+ 20° + 0»-4 + 1°*4 + l°-0 — 350 -0°*6 ~0°'2 ' + 0°*4

+ 30° + 0°*5 + 0°-8 + 0°*3 - 25° -0°*5 0°-0 + 0«-5

+ 40® + 0°-6 + 0»-9 + 0°*3 - 15° -0«-3 0°'0 + 0»-3

+ 50° +0°-6 +0«-3 -0°-3 - 5° -o°-i 0°*0 + 0°-l

+ 60° + 0°*5 + 0°-3 - 0°*2 + 5° + 00-1 + 0»-6 + 0°*5

+ 70° + 0°*4 + 00-6 + 0°-2 + 15° + 00-3 + 0°-6 +0°*3

+ 80° + 0°*2 + 0°-4 + 0°-2 + 25° + 0°-5 + 0°-4 -0°-l

+ 90° 0°*0 -0»-4 -0°*4 + 35° + 0»-6 ? ?

+ 100° - 0°*2 -0°-5 — 0°*3 + 45° + 00-7 + 0»-4 ~0°‘3

+ 110° ~0°*4 + 0“-5 +0°*9 + 55° + 0°-6 + l°-9 + 1°*3

4*120° - 0°*5 -00-6 - 0°*1

+ 130° -0°*6 -0°-2 + 0°*4

+ 140° -0°*6 - o»-7 :

- 0°*1
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Table II. (
continued).

Experiment, No. 22.

0= 55038'

e= - 7°27'

log m= 4**035

Experiment, No. 18.
0=21°39'
€=-12044'

logm= 4*029

a - Vi

calc. obs. dif.

- 90° 0°*0 -0°*6 -0°*6
- 45° -1°*9 -20-1 -0°*2

0° 0°*0 -00*2- - 0°*2

4 45° 4l°*9 4l°*3 -0°*6
4 90® o°-o 4 0°*2 40°*2
4135° -1°*9 -20*2 -0°*8
4180° 0°*0 40°*7 40°-7
4 2250 4l°-9 4l°*9 0°*0

Experiment, No. 21.
0=28°26'
e=60°49'

logm~ + -039

l calc.

a - &
obs. dif.

0°*0 4 00*2 40°*2
-1°*2 - 1°*6 ,-0°*4
— 20,2 -a°*o -0°*8
-20*6 - 3°*2 -0°*6
-2°*3 -2°*9

|

-0°*6
-lo*3 -1°*0 40°*3
0°*0 40°*8 400*8

4l°*B 42°*6 4l°*3
42°*3 4l°*5 -0°*8
420*6 4 1°*6 -1°*0
420*2 4 1°*7 -0°*5
4l°*2 4 1°*2 00*0

00*0 40°*7 40°*7

Experiment, No. 13.

0= 39°oO'

e=56°50'
log m - + *034

-zzr calc.

a —'Uj

obs. dif.

-180° 0°*0 0°*0 0°*0

-165° + l°-2 + l°-4 4 0 0,2

-150° + 2»-0 • +2°'5 + 0°-5

-135° + 2»-3 + l°-6 -0°-7

-1200 + 2°-0 42°*2 4 0°*2

-105° +1H 4l°*3 4 0°*2

- 90° 0°-0 40°*1 40°*1

- 75° -1«-1 -10*5 -0°*4

- 60° -2°-0 -2°*1 -0°*1

- 45° -2°-3 -20*8 -0°*5

- 30° -2°'0 -1°*9 40°*1
- 150 -I°-2 -0°*8 400*4

- 60°

- 50 <>

- 400

- 30°

- 20°

- 10°

00

4* 100

4 20°

4 30°

4 400

+ 500

4 600

4 70°

4 80°

4 90°

calc. obs.
|

dif.

-1 0,9 - 00*9 4 1°*0

- 2°*2 - 1°*9 4 00*3

- 2°*2 ~ 1°*0 4 1°*2

-2°*0 — 1°*8 400*2
- 1°*5 -30*4 - 10*9

-0 0,8 - 0°*7 4 00*1

0°‘0 — 0°*2 - 00*2

400*8
1 4 1°*0 400*2

4 10*5 4 0°*1 -I0.4

4 20*0 4 l°'l - 0O,9
4 20*2 420*6 4 0°*4

420*2
1 1 0.0

4 1°*7 - 0°*5

4

1

y 4 3°*7 4 1°*8

+ l°-4 420*2 4 0°*8

+ 0»-7 4 00*9 4 0
{,*2

0»-0 400*1 400*1

Experiment, No. 17.
0= 50045'

e= 4l67ft15'

logm~ 4*122

'DT calc.

a' — w
obs. diff.

- 90° 0o*0 Oft
*o OH)

- 80° -2M - l<>-7 + 0^7
- 70° -4»-6 - 4»-0 4 0°*6
- 60° - G°-4 - 6°-0 400*4
- 50° -7H - 7H> 40«*X
- 40° -b°-0 - io°-o -20*0
- 30° -7H - 7“-3 400-1

Experiment, No. 23.
6= 54°53'

«=s ~7°27'
logm = 4 *082



DISCUSSION OF THE NUMERICAL RESULTS.

Table II. (continued).

Experiment, No. 15.

0 = 59°52'

c=-6S015'

log ra=+ *225

cl — *zzr

zb calc. obs.
|

diff.

0° 0°-0 + OH + 00-1

- 10° - 6°-5 - 2°-7 + 3°-8

- 20° - 11°*4 - 4°-l +7°-3
- 800 - 14°-1 - 170.7 — 3°-6

- 40° -14H — 16°*2 -1 0,6
- 60° -13»-4 - 15°-4 — 2°-0

- 60“ -ll°-0 _ 12«-2 — 1°-2

- 70° - 7°-8 - 10°-0 _ 2»-2

- 80° - 4°-0 - 4°-6 - 0°-6

- 90° o°-o _ QO-2 — 0°-2

Experiment, No. 11.

i=14»50'; 0=22°3O' ; e=-15»30\

First Image,

logm = + *289.

Second Image,

log m = + *061.

Third Image,

log m= + *209.

zb
a! ~m a — zb 0! — zb

calc. obs. diff. calc. obs. diff. calc. obs. diff.

_ 1050 + 7°-l + 6°-9 -0°*2 + 1°*9 + 20-7 + 0°-8

- 85° - 2°*4 - 20-6 -0°-2 -00*7 -0°*5 + 0°-2 - 1°*9 - 10-8 +00*1
- 65° - 11°*5 - 9°*5 + 2°-0 -20-9 — 2°-6 + 0«-3 - 8»-9 - 8°-5 + 0°*4

- 45° - 17°-8 - 18°*2 -0°*4 -40*0 -3°*4 + 0°-6
[

— 13°*3 - 14°-3 -1°*0
- 25° - 17°-2 - 18°*3 -1°*1 - 30-2 - 30-5 - 0°*3 — 12°*0 - 12°-8 -0°*8
— 5° - 4«-6 - 40-6 o°*o -00-7 -00*7 00-0 - 3°*0 - 2°-7 + 00*3

+ 15° + 120-S + 13°*7 + 1°*2 + 2«-l + l°-9 -00,2 + 80*4 + 8°-4 0°*0

+ 35° + 18°-7 + 19°*1 + 0°*4 + 3°-9 + 4°-6 + 00*7 + 13°*6 + 12°-5 -1°*1

+ 55° + 15°-2 + 140*3 -00*9 + 30-7 + 30-7 0°‘0 + 11°*6 + 12°-0 + 00*4

Experiment, No. 12.

i=9°l' ; 0=53°39'; e=-63tt4S'.

First Image,

log ?7i=+ *756.

Second Image,

log m - + *122.

Third Image.

logm= + *366.

ZB
a — zb

calc. obs. diff.

a! — zb

calc. obs. diff.

a! — zb

calc. obs. diff.

+ 260

+ 46»

+ 90®

+ 1360

!
+440-4 +440-3 -00-1 +6°-7 + 60-7 00-0

+ 35°-l +33»-7 — 1°-4 +7°-9 +9°-l +10-2
QO-0 00*0 0°-0 0°-0 0°-0 0«-0

- 350-I -360-7 -l°-6 —7°-9 - 6°-2 +1°*7

+ 22°-3 + 250-O

+ 21°-7 +210*7
0°-(> 0«-0

! _21?-7 -20°-0

+ 2»-7

00-0

0»-0

+ 10-7
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A nearly constant error appearing in the table of differences

would indicate merely that the value of e used in the reduction

was slightly erroneous. A slight error in e, it is to be remembered,

produces no sensible error in login, whenever the observations arc

balanced with respect to one of the standard points.

In the first two experiments entered in the table, the crowding

of the planes of polarization is so small that it is masked by errors

of observation, and it is only by combining all the observations

that a slight crowding towards the plane of diffraction can be

made out. In all the other experiments, however, a glance at

the numbers in the third column is sufficient to shew in what

direction the crowding takes place. From an inspection of the

numbers found in the columns headed “diff.” it seems pretty

evident that if the formula (49) be not exact the error cannot bo

made out without more accurate observations. In the case of

experiment No. 15, the errors are unusually large, and moreover
appear to follow something of a regular law. In this experiment
the observations were extremely uncertain on account of the large

angle of diffraction and the great defect of polarization of the light

observed, but besides this there appears to have been somo con-
fusion in the entry of the values of w. This confusion affecting

one or two angles, or else some unrecorded change of adjustment,
was probably the cause of the apparent break in the second column
between the third and fourth numbers. Since the value of logm
is deduced from all the observations ' combined, there seems no
occasion to reject the experiment, since even a large error affecting
one angle would not produce a large error in the value of log m
resulting from the whole series. In the entry of experiment
No. 12 the signs ofw have been changed, to allow for .the reversion
produced by reflection. This change of sign was unnecessary in
No. 11, because in that experiment the polarizer was actually
reversed. The results of experiment No. 12 would be best satisfied
by using slightly different values of the index error of the analyzer
or the three images, adding to the assumed index error about
^ ’ “h , +2, for the first, second, and third images respec-

tively.^ The largest error in the third columns, 2-7”, is for ar
=4-25", third image. The three readings by which a was deter--xBmedm this case were -15°, -13W, -12°? Hence tho error

t J, ’ ,
6Ven

,

D0 part of were due to an index error, wouldfwdfy be too large to be attributed to errors of-observation.
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Since the formula (49), even if it be not strictly true, repre-

ents the experiments with sufficient accuracy, we may consider

he value of log m which results from the combination of all the

hservations belonging to one experiment as itself the result of

lirect observation, and proceed to discuss its magnitude. Let us

:onsider first the experiments on diffraction at refraction, in which

he light was incident perpendicularly on the grating.

Although the theory of this paper does not meet the case in

vhich diffraction takes place at the confines of air and glass, it

eads to a definite result on each of the three following suppo-

sitions :

First, that the diffraction takes place in air, before the light

reaches the glass

:

Second’, that the diffraction takes place in glass, after the light

has entered the first surface perpendicularly

:

Third, that the diffraction takes place in air, after the light has

passed perpendicularly through the plate.

On the first supposition let av a
2 ,

a be the azimuths of the

plane of polarization of the light after diffraction, after the first

refraction, and after the second refraction respectively, and 0' the

angle of refraction corresponding to the angle of incidence 0, so

that sin 6 = fi sin 6\ p being the refractive index of the plate : and

first, let us suppose the vibrations of plane-polarized light to be

perpendicular to the plane of polarization. Then by the theory of

this paper we have tan a
t
= sec 6 tan ct, and by the known formula

applying to refraction we have tan

a

2
= cos {6 — O') tan a

t ,
tana

= cos (0 — ff) tan whence tan a = m tan -cr, where

m= sec 6 cos
2

(0 — 6').

On the second supposition, if a
x
be the azimuth after diffraction

at an angle 0

'

within the glass, we have tan a
t

r

= sec & tan vr,

tan a = cos (

0

— 0
f

)
tan olv whence tan a = m tan w, where

m = sec & cos (

0

— &).

. On the third supposition we have tana = m tan where

m = sec 0.

If we suppose the vibrations parallel to the plane of polarization,

we shall obtain the same formulae except that cos0, cos#
7

will

come in place of sec 0
,

sec 0\ the factor cos (0— &) being un-

altered.
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Theory would lead us to expect to find the value of logm

deduced from observations in which the grooved face was turned

from the polarizer lying between the values obtained on the

second and third of the suppositions respecting the place of diffrac-

tion, or at most not much differing from one of these limits.

Similarly, we should expect from theory to find the value of log m
deduced from observations in which the grooved face was turned

towards the polarizer lying between the values obtained on the

first and second suppositions, or at most not lying far beyond one

of these values.

The following table contains the values of logm calculated

from theory on each of the hypotheses respecting the direction of

vibration, and on each of the three suppositions respecting the

place of diffraction. The numerals refer to these suppositions.

The table extends from 0 = 0 to 9 = 90°, at intervals of 5°. When
0=0, m = l, and log m = 0, in all cases. In calculating the table,

I have supposed ^=1*52, or rather equal to the number, (1*5206
,)

whose common logarithm is *182. This table is followed by an-
other containing the values of log m deduced from experiment.

TABLE III. Values of logm from theory, (m being supposed
equal to 1*5206.

0

Vibrations supposed

perpendicular to the plane

of polarization.
’

Vibrations supposed

parallel to the plane of

polarization.

I n in I H HI

5°

too

15°

20°

25°

30°

35°

400

45°

50°

55o

I 60°

65°

TO®

75°

800

85°

900

+ •001

+ •005

+ •011

+ •020

+ •032

+ •047

+ *065

+ •086

+ 111
+T89

+ T73
1 +-214
+ •262

+ •324

+ •408

+*533
+ *773

+ oo

+ *001

+ •002

+ *004

+ •008

+ •012

+ *017

+ *022

+ *028

+ *033

+ *037

I
+ *040

+ *040

+ *039

+ *034

+ *022

+ •005

-•022
-•059

+ *002

+ *007

+ *015

+ -027

+ *043

+ -062

+ -087

+ *116

+ *150

+ *192

+ *241

+ *301

+ -374

+ *466

+ -587

+ *760

+ 1*060

+ 00

- *002
- *008
- *019
- *034
- *053
- *078
- *109.

- *146
- *190
- *244

1
- *310
- *388
- *486
- *608
- *766
- *987
- 1*347
- 00

-*001
-•004
— *008

-*015
-•023
-*033
-•044
-•058
-•073
-•090
-•109
-•129
-•151
-*175
-*202
-*231
-*265
-*305

- *002
- *007
- *015
- *027
- *043
- *062
- *087
- *116
- *150
- *192

1 - *241
- *801
- *374
- *466
- *587
- '760
- 1*060
- oo
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TABLE IV. Values of logm from observation.

Nature of Experiment. No. 6 log m |

Diffraction at refraction.
14 29*57' + •009Incidence perpendicular.

Grooved face of glass 2 50°2S' + •010
plate turned from the
incident light. 22 54°38' + •035

Diffraction at refraction. 18 21°39' + •029

Incidence perpendicular. 21 28°26' + •039

Grooved face of glass 13 39°50' + *034

plate turned towards the 17 50°45' + •122

incident light. 23 54°53' + •082

15 59°52' + •225

A comparison of the two tables will leave no reasonable doubt

that the experiments are decisive in favour of Fresnel’s hypo-

thesis, if the theory be considered well founded. In considering

the conclusiveness of the experiments, it is to be remembered

that on either the first or second supposition respecting the place

of diffraction, (and the third certainly cannot apply to the case

in which the grooved face is turned towards the incident light,)

the planes of polarization of the diffracted light are crowded by
refraction towards the perpendicular to the plane of diffraction,

and therefore the observed crowding towards the plane of diffrac-

tion does not represent the whole effect of the cause, be it what

it may, of crowding in that direction.

If ft be the value of o' — ur for vr = 45°, ft = 1° when log m =
*015, nearly; and when log m is not large, ft is nearly propor-

tional to log m. In this case ft is nearly the maximum value

of cl — isr. Hence the greatest value of a'— -or, expressed in degrees,

may he obtained approximately from Table IV, and, within the

range of observation, from Table III, by regarding the decimals

as integers and dividing by 15. Thus, for log m — — *388 the

real maximum is 240,

8, and the approximate rule gives 25°*9, so

that this rule is abundantly sufficient to allow us to judge of the

magnitude of the quantity by which the two theories differ. For

0 = 60°, the two columns in Table III headed "I”, as well as

those headed “III”, differ by ‘602, and those headed “II”, differ

by T69, so that the values assigned to ft by the two theories differ

by about 40° or 11°, according as we suppose the diffraction to

take place in air or in glass. For 0 = 40°, the corresponding

differences are 15° and 6°, nearly. These differences, even those



318 ON THE DYNAMICAL THEORY OF DIFFRACTION.

which belong to diffraction within the glass plate, are large com-

pared with the errors of observation; for the probable cause of

the large errors in experiment No. 15, has been already mentioned.

In the following figure the abscissae of the curves represent

the angle of diffraction, and the ordinates the values of log m
calculated from theory. The numerals refer to the three supposi-

tions respecting the place of diffraction, and the letters E' A
,

(the first vowels in the words 'perpendicular and parallel,) to the

two hypotheses respecting the direction of vibration. The dots

represent the results of the experiments in which the grooved

face of the glass plate was turned towards the polarizer, and
the crosses those of the experiments in which it was turned in

the contrar}^ direction.

KJ

0
id H
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The smallness of log m in experiment No. 23, to which the

•th dot belongs, is probably due in part to the use of the red

;lass, since, as has been already remarked, the planes of polariza-

ion of the blue were more crowded towards the plane of diffrac-

ion than those of the red. On this account the dot ought to

)e slightly raised to make this experiment comparable with its

xeighbours. On the other hand it will be seen by referring to

Table II, that No. 23 was a much better experiment than No. 15,

which is represented by the 6th dot, and apparently also better

than No. 17, which is represented by the 4th dot. No. 21,

represented by the 2nd dot, seems to have been decidedly better

than No. 13, which is represented by the 3rd. Nos. 14 and 22,

represented by the 1st and 3rd crosses respectively, wrere probably

much better, especially the latter of them, than No. 2, which is

represented by the 2nd cross. Now, bearing in mind the cha-

racter of the experiments, conceive two curves drawn with a free

hand, both starting from the origin, where they touch the axis,

and passing, the one among the dots, and the other among the

crosses. The former of these would apparently lie a little below

the curve marked I. E, and the latter a very little below the

curve. II. E.

Hence the observations are very nearly represented by adopting

Fresnels hypothesis respecting the direction of vibration, and,

whether the grooved face be turned towards or from the incident

light, supposing the wave broken up before it reaches the grooves.

I think a physical reason may be assigned why the supposition

of the wave’s being broken up before it reaches the grooves should

be a better representation of the actual state of things than the

supposition of its being broken up after it has passed between

them. Till it reaches the grooves, the wave is regularly propa-

gated, and, according to what has been already remarked in the

introduction, we have a perfect right to conceive it broken up at any

distance we please in front of the grooves.

Let the figure represent a section of the

grooves, &c., by the plane of diffraction.

Let aA , bB be sections of two consecutive

grooves, AB being the polished interval.

Let e

h

be the plane at which a wave in-

cident in the direction represented by the

arrow is conceived to be broken up. Let 0 be any point in eh,

c f O l
9Ajw:l

A M/R N B 0
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and from 0 draw ORS in the direction of a ray proceeding regu-

larly from 0 and entering the eye
;
so that OR, RS are inclined to

the normal at angles 6, 9', or 6\ 6, according as the light is passing

from air into glass or from glass into air. The latter case is repre-

sented in the figure. Of a secondary wave diverging spherically

from 0, which is only partly represented in the figure, those

rays which are situated between the limits OA, OB, and are

not inclined at a small angle to either of these limiting di-

rections, may be regarded as regularly refracted across AB.

In a direction inplined at a small angle only to OA or OB,

it would be necessary to take account of the diffraction at the

edge A or B . Let y be a small angle such that if OR be inclined

to OA and OB at angles greater than y the ray OR may he

regarded as regularly refracted, and draw Ae,Bg inclined at angles

y to OR, and Af Bh inclined at angles — y. Then, in finding the

illumination in the direction RS, all the secondary waves except

those which come from points situated in portions such as ef, gh

of the plane eh may be regarded as regularly refracted, or else com-

pletely stopped, those which come from points in fg and similar

portions being regularly refracted, and those which come from

points to the left of e, between e and the point which bears to a the

same relation that h bears to b, as well as those which come from

similar portions of the plane eh,
being completely stopped. Now

the whole of the aperture AB is not effective in producing illu-

mination in the direction RS. Tor let 0 be the centre of AB,
and through C draw a plane perpendicular to RS, and then draw

a pair, of parallel planes each at a distance from the former

plane, cutting AB in 2sfv another pair at a distance \, and

cutting AB in Mv JS
r
2 ,
and so on as long as the points of section

fall between A and B. Let M, N" be the last points of section.

Then the vibrations proceeding from MN in the direction RS
neutralize each other by interference, so that the effective portions

of the aperture are reduced to AM, NB. Now the distance

between the feet of the perpendiculars let fall from A, M on RS
may have any value from 0 to and for the angle of diffraction

actually employed AM was equal to about twice that distance on

the average, or rather less. Hence AM may be regarded as

ranging from 0 to X

;

and since for the brightest part of a band

forming that portion of a spectrum of the first class which belongs

to light of given refrangibility AM has just half its greatest value,
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"we may suppose AM— iA. But if the distance between the planes
cli

y ab be a small multiple ol A, and y be small, ef will be small
compared with A, and therefore compared with AM. Hence the
breadth of the portions of the plane eh, such as ef, for which we
are not at liberty to regard the light as first diffracted and then
regularly refracted, is small compared with the breadth of the
portions of the aperture, such as AM, which are really effective

;

and therefore, so far as regards the main part of the illumination,

we are at liberty to make the supposition just mentioned. But
we must not suppose the wave to be first regularly refracted and
then diffracted, because the regular refraction presupposes the

continuity of the wave.

The above reasoning is not given as perfectly satisfactory, nor

could we on the strength of it venture to predict with confidence

the result
;
but the result having been obtained experimentally,

the explanation which has just been given seems a plausible way
of accounting for it. According to this view of the subject, the

result is probably not strictly exact, but only a very near approxi-

mation to the fact. For, if we suppose the distance between the

planes eh, ab to be only a small multiple of A, we cannot apply the

regular law of refraction, except as a near approximation. More-

over, the dynamical theory of diffraction points to the existence of

terms which, though small, would not be wholly insensible at the

distance of the plane ab. Lastly, when the radius of a secondary

wave which passes the edge A or B is only a small multiple of A,

we cannot regard y as exceedingly small.

Let us consider now the results of experiments Nos. 11 and 12.

In diffraction at refraction, the amount of crowding with respect

to which the theory leaves us in doubt vanishes along with /& — 1

;

and although this amount is far from insensible in the actual

experiments, it is still not sufficiently large to prevent the results

from being decisive in favour of one' of the two hypotheses re-

specting the direction of vibration. Thus the curves marked “AL”

in the first figure are well separated from those marked “ E”, and

if fju were to approach indefinitely to 1, the curves I. A and II. A
would approach indefinitely to III. A, and I. E, and II. E to

III. E. In diffraction at reflection, however, the case is quite

different, and in the absence of a precise theory little can be made

of the experiments, except that they tend to confirm the law

expressed by the equation (49). In the case of the first and second

s. ir. • 21
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images the diffraction accompanied refraction, and so far the

experiments were of the same nature as those which have been

just discussed, but the angle of incidence was not equal to zero,

and in that respect they differ.

Let i, p be the angles of refraction corresponding to the angles

of incidence, i, i + 9. Then in the case of the first image the

tangent of the azimuth of the plane of polarization is multiplied

by cos (f + 9 — p) sec (i + 9 + p) in consequence of reflection, and

by cos (i+9—p) in consequence of refraction; and in the case of

the second image by cos (i — i') in consequence of refraction, and

by cos (t — t) sec (i + i') in consequence of reflection. Hence if

m be the factor corresponding to diffraction and the accompany-

ing refraction, m the factor got from observation, and regarded

as correct, we have

for 1 st image, logm = log m + log cos (i + 9 + p) - 2 log cos (i +9 - p),

for find image, log m = logm + log cos (i+ %') - 2 log cos (i - %).

In the case of the first image, m' relates to diffraction at refrac-

tion from air into glass, where i is the angle of incidence in air,

and p-i the angle of diffraction in glass. In the case of the
second image, m relates to diffraction from glass into air, where %

is the angle of incidence in glass, and 9 the angle of diffraction in
air.

In experiment No. 11, 1st image, we have from Table II, log
rn = + -289; for the 2nd image logTO = + -061. In this experi-
ment j = 14° 50', 6 = 22" 30', whence i'= 9° 41', p= 23" 30'. We
thus get

tor isc image, log m = + ’289 - •288 = + -003,
for 2nd image, log m' = + -061 - •037 = + •024.’

The positive values of log m' which result from these experi-
ments notwithstanding the refraction which accompanied the
diffraction hear out the results of the experiments already dis-

maSi
^ hypothesis of Fresnel. It may be re-

which fHff f

g m C°meS °Ut krger f°r the second ^age, in
Jhich diffraction accompanied refraction from air into glass thanfor the first image, in which diffraction accompanied refmction

JSt IDt0 “* ^ alS°^^^

I..SITS c^e
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regularly reflected light the amount of crowding of the planes of

polarization changes rapidly about the polarizing angle, it is pro-

bable that small errors in f.

i

,
iy
and 9 would produce large errors in

m. Hence little can be made of this experiment beyond confirm-

ing the formula (49).

I will here mention an experiment of Fraunhofer’s, which

,

when the whole theory is made out, will doubtless be found to

have a most intimate connexion with those here described. In
this experiment the light observed was reflected from the grooved

face of a glass-grating; the reflection from the second surface was
stopped by black varnish. In Fraunhofers notation e is the

interval from one groove to the corresponding point of its consecu-

tive, and is measured in parts of a French inch, cr is the angle of

incidence, t the inclination of the light observed to the plane of

the grating, (Et) the value of t for the fixed line E}
and the

numerals mark the order of the spectrum, reckoned from the axis,

or central colourless image, the order being reckoned positive on

the side of the acute angle made by the regularly reflected light

with the plane of the grating. The following is a translation of

Fraunhofers description of the experiment.

“It is very remarkable that, under a certain angle of incidence,

a part of a spectrum arising from reflection consists of perfectly

polarized light. This* angle of incidence is very different for the

different spectra, and even very sensibly different for the different

colours of one and the same spectrum. With the glass-grating

e = 0*0001223 there is polarized : that is, the green part of

this first spectrum, when cr =49°;
(
Er)^ ll

\ or the green part in

the second spectrum lying on the same side of the axis, when

cr =40°; lastly, (Er) (

~
l)

,
or the green part of the first spectrum

lying on the opposite side of the axis, when a = 69°. When
(Er) i+1) is polarized perfectly, the remaining colours of this spec-

trum are still but imperfectly polarized. This is less the case

with (-Fr)
(+II)

,
and cr can be sensibly changed while this colour still

remains polarized. (Er)^ is under no angle of incidence so com-

pletely polarized (so ganz vollstandig polarisirt) as (Er)^+l)
. With

a grating in which e is greater than in that here spoken of, the

angle of incidence would have to be quite different in order that

the above-mentioned spectra should be polarized*.”

* Gilbert’s AnnctUn der Physilc, R. xiv. (1823) S. 304. .

21—2
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If we suppose ay a function of v such that <x_
1
= 69, cr +1 = 49,

<j+ 2
= 40, we get by interpolation cr

0
= 58*33; so that if we suppose

the central colourless image, which arises from light reflected

according to the regular law, to have been polarized at the polar-

izing angle for light reflected at a surface free from grooves, we

get ya=tan 58° 40' = 1*64, from which it would result that the

grating was made of flint glass. The inclination of E in the spec-

trum of the order v to the plane of the grating may be calculated

from the formula cos r — sin cr + v\Je*, given by Fraunhofer, and

obtained from the theory of interference; and 0 = 90° — t — <t,

where 6 is the angle of diffraction. We thus get for green light

polarized by reflection and the accompanying diffraction,

order of spectrum O’ d cr + 0

-1 09° - 18° 13' 50° 47'

0 58° 40' 0 58° 40'

+ 1 49° + 17° 1' 66° 1'

+ 2 40° + 33° 52' 73° 52'.

If we suppose the formula (49) to hold good in this case, m
becomes infinite for the angles of incidence or and the correspond-

ing angles of reflection <t 4- 0 contained in the preceding table.

Another observation of Fraunhofer’s described in the same

paper deserves to be mentioned in connexion with the present

investigation, because at first sight it might seem to invalidate the

conclusions which have been built on the results of the experi-

ments. On examining the spectra produced by refraction in

another glass-grating on which the light was incident perpendicu-

larly, Fraunhofer found that the spectra on one side of the axis

were more than twice as bright as those on the other
-f\

To

account for this phenomenon, he supposed that in ruling the

grating the diamond had had such a position with respect to the

plate that one side of each groove was sharp, the other less defined.

This view was confirmed by finding that a glass plate covered with

a thin coat of grease, and purposely ruled in such a manner, gave

similar .results. Now with reference to the present investigation

the question might naturally be asked, If such material changes in

intensity are capable of being produced by such slight modifications

in the diffracting edge, how is it possible to build any certain con-

* In Fraunhofer’s notation the wave length is denoted by to.

f Gilbert’s Annalen.der,Physik,B. xiv. p. 353.



DISCUSSION OF THE NUMERICAL RESULTS. 325

elusions on an investigation in which the nature of the diffracting

edge is not taken into account ?

To facilitate the explanation of the apparent cause of the

above-mentioned want of symmetry, suppose the diffraction pro-

duced by a wire grating in which the section of each wire is a

right-angled triangle, with one side of the right angle parallel to

the plane of the grating, and perpendicular to the incident light,

and the equal acute angles all turned the same way. The tri-

angles ABC, DBF in the figure repre-

sent sections of two consecutive wires,

and GB
,
HD, IE represent incident

rays, or normals to the incident waves,

which are supposed plane. Let BE = e,

and BD : DE :: n : 1 —n. Draw BK,
DL

,
EM parallel to one another in the

direction of the spectrum of the order v

on the one side of the axis, so that v\ is the retardation of the

ray EM relatively to BK
}
and therefore sin 6 = v\/e, 0 being the

angle of diffraction, or the inclination of BK to GB produced.

Draw BET, FO ,
EB at an inclination 0 on the other side of the

axis, and let i DBF = a. Then the retardation of DL relatively

to BK is equal to nv\ or ne sin 0
} and that of BN relatively to

FO is equal to we sin 0 + we tan a cos 0 — we tan a, so that if we
denote these retardations by

Ii
l9

J£
2 ,
R

t
= ne sin 0

,
R

2= ne sin 0 — ne tan a versin 0.

Let pv p2
be the greatest integers contained in the quotients of

Rv B2
divided by X, and let + iJ

2
==p2

X + r
2

. Then
the relative intensities of the two spectra of the order -rv and — v

depend on r19 r2
: in fact, we find for the ratio of intensities, on

the theory of interference, sin
3 irrj\ : sin

2
tttJX- Now this ratio

may have any value, and we may even have a bright spectrum on

one side of the axis answering to an evanescent spectrum on the

other side. It appears then in the highest degree probable that

the want of symmetry of illumination in Fraunhofer's experiment

was due to a different mode of interference on opposite sides of the

axis. But this has nothing whatsoever to do with the nature of

the polarization of the incident light, and consequently does not

in the slightest degree affect the ratio of the intensities, or rather

the ratio of the coefficients of vibration, of the two streams of
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light belonging to the same spectrum corresponding to the two

streams of oppositely polarized light into which we may conceive

the incident light decomposed, and consequently does not affect

the law of the rotation of the plane of polarization of the diffracted

light.

P. S. Since the above was written, Professor Miller has de-

termined for me the refractive index of the glass plate by means

of the polarizing angle. Four observations, made by candle-light,

of which the mean error was only 1 gave for the double angle

113° 20', whence p = tan 56° 40' = 1*52043, which agrees almost

exactly with the value I had assumed. In two of these obser-

vations the light was reflected at the ruled, and in two at the

plane surface. The accordance of the results bears out the sup-

position made in Part II, that the light belonging to the central

colourless image, which is reflected or refracted according to the

regular laws, is also affected as to its polarization in the same

manner as if the surface wrere free from grooves. The refractive

index of the plate being now known for certain, the experiments

described in this paper render it probable that the crowding of

the planes of polarization which actually takes place is rather less

than that which results from theory on the supposition (which is

in a great measure empirical), that the diffraction takes place

before the light reaches the grooves. The difference is however so

small that more numerous and more accurate experiments would

be required before we could affirm with confidence that such is

actually the case.

When a stream of light is incident obliquely on an aperture,

it is sometimes necessary to conceive each wave broken up as its

elements -arrive in succession at the plane of the aperture. In

applying the formula (46) to such a case, it will be sufficient to

substitute for dS the projection of an element of the aperture on

the wave’s front, 6 being measured as before from the normal to

the wave, which no longer coincides with the normal to the plane

of the aperture. •

Before concluding, it will be right to say a few words re-

specting M. Cauchy’s dynamical investigation of the problem of

diffraction, if it he only to shew that I have not beep anticipated
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in the results which I here lay before the Society. This investi-

gation is referred to in Moigno’s Repertoire d'Optique moderne
,

p. 190, and will be found in the fifteenth Volume of the Comptes

Rendus
y
where two short memoirs of M. Cauchy's on the subject

are printed, the first of which begins at p. 605, and the second at

p. 670. The first contains the analysis which M. Cauchy had
some years before applied to the problem. This solution he after-

wards, as it appears, saw reason to abandon, or at least greatly to

restrict; and he has himself stated (p. 675), that it is only ap-

plicable when certain conditions are fulfilled, and when moreover

the nature of the medium is such that normal and transversal

vibrations are propagated with equal velocity. This latter con-

dition, as Green has shewn, is incompatible with the stability of

the medium. In the second memoir M. Cauchy has explained the

principles of a new solution of the problem which he had obtained,

without giving any of the analysis. The principal result, it would

appear, at which he has arrived is, that light incident on an aper-

ture in a screen is capable of being reflected, so to speak, by the

aperture itself (p. 675); and he proposes seeking, by the use of

very black screens, for these new rays which are reflected and

diffracted. But it follows from reasoning similar to that of Art.

34, or even from the general formula (45) or (46), that such rays

would be wholly insensible in all ordinary cases of diffraction, even

were the screen to reflect absolutely no light. The only way
apparently of rendering them sensible would be, to construct a

grating of actual threads, so fine as to allow of observations at

a large angle of diffraction. Such a grating I believe has never

been made
;
and even if it could be made it would apparently

he very difficult, if not impossible, to separate the effect to be

investigated from the effect of reflection at the threads of the

grating.

[A few years after the appearance of the above Paper, the

question was re-examined experimentally by M. Holtzmann*, who

at first employed glass gratings, but without getting consistent

results (though there seemed some indication of a conclusion the

same as that which I had obtained), and afterwards had recourse

# Poggendorffg Annalcny Vol. 99 (1856) p. 446, or Philosophical Magazine
,

Vol. 13, p. 135.
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to a Schwerd’s lampblack grating. With the latter consistent

results were obtained. But the crowding of the planes of polari-

zation was towards the plane of diffraction
;
and when instead of

measuring the azimuths of the planes of polarization of the

incident and diffracted light, the incident light was polarized

at an azimuth of 45° to the lines of the grating, and the diffracted

light was divided by a double-image prism into two beams

polarized in and perpendicularly to the plane of diffraction, it was

the latter that was the brighter. From these experiments the

conclusion seemed to follow that in polarized light the vibrations

are in the plane of polarization. The amount of rotation did not

very well agree with theory. The subject was afterwards more

elaborately investigated by M.Lorenz* **. He commences by an

analytical investigation which he substitutes for that which I

had given, which latter he ‘regards as incomplete, apparently

from not having seized the spirit of my method. He then gives

the results of his experiments, which were made with gratings of

various kinds, especially smoke gratings. His results with these do

not confirm those of Holtzmann, and he points out an easily over-

looked source of error, which he himself had not for some time

perceived, which he thinks may probably have affected Holtz-

mann’s observations. Lorenz’s results like mine were decisively

in favour of the supposition that in polarized light the vibrations

are perpendicular to the plane of polarization. He found as I had

done that the results of observation as to the azimuth of the plane

of polarization of the diffracted light agreed very approximately

with the theoretical result, provided we imagine the diffraction

to take place before the light reaches the ruled lines.]

* Poggendorff’s Annalen, Yol. Ill (1860) p. 815, or Philosophical Magazine
,

Yol. 21, p. 321.
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Part I.]

OlST THE NUMERICAL CALCULATION OF A CLASS OF DEFINITE
Integrals and Infinite Series.

[Read March 11, 1850.]

In a paper “On the Intensity of Light in the neighbourhood

of a Caustic Mr Airy the Astronomer Royal has shewn that the

undulatory theory leads to an expression for the illumination in-
r 00

volving the square of the definite integral
j

cos ~ (w3 — mw) dw
,

where m is proportional to the perpendicular distance of the point

considered from the caustic, and is reckoned positive towards the

illuminated side. Mr Airy has also given a table of the numerical

values of the above integral extending from m = — 4 to m = 4- 4, at

intervals of 0*2, which was calculated by the method of quadratures.

In a Supplement to the same paperf the table has been re-calcu-

lated by means of a series according to ascending powers of m, and

extended to m = ± 5*6. The series is convergent for all values of

m, however great, but when m is at all large the calculation be-

comes exceedingly laborious. Thus, for the latter part of the

table Mr Airy was obliged to employ 10-figure logarithms, and.

even these were not sufficient for carrying the table further. Yet

this table gives only the first two roots of the equation W—0,W
denoting the definite integral, which answer to the theoretical

places of the first two dark bands in a system of spurious rainbows,

whereas Professor Miller was able to observe 30 of these bands.

To attempt the computation of 30 roots of the equation W= 0 by

Camb . Phil Tram. Yol. vx. p. 379. f Yol. viii. p. 595.
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means of the ascending series would be quite out of the question,

on account of the enormous length to which the numerical calcula-

tion would run.

After many trials I at last succeeded in putting Mr Airy's

integral under a form from which its numerical value can he calcu-

lated with extreme facility when m is large, whether positive or

negative, or even moderately large. Moreover the form of the

expression points out, without any numerical calculation, the law

of the progress of the function when m is large. It is very easy to

deduce from this expression a formula which gives the i
th root of

the equation TV—0 with hardly any numerical calculation, except

what arises from merely passing from (m/3)#, the quantity given

immediately, to m itself.

The ascending series, in which Wmay he developed belongs to

a class of series which are of constant occurrence in physical ques-

tions. These series, like the expansions of e~
x

,
sin x, cos x> are

convergent for all values of the variable x, however great, and are

easily calculated numerically when x is small, but are extremely

inconvenient for calculation when x is large, give no indication of

the law of progress of the function, and do not even make known
what the function becomes when x = co . These series present

themselves, sometimes as developments of definite integrals to

which we are led in the first instance in the solution of physical

problems, sometimes as the integrals of linear differential equations

which do not admit of integration in finite terms. Now the method
which I have employed in the case of the integral W appears to

be of very general application to series of this class. I shall at-

tempt here to give some sort of idea of it, but it does not well

admit of being described in general terms, and it will be best

understood from examples.

Suppose then that we have got a series of this class, and let

the series be denoted by y or / (x), the variable according to as-

cending powers of which it proceeds being denoted by x. It will

generally be easy to eliminate the transcendental function / (#)

between the equation y=/(x) and its derivatives, and so form a
linear differential equation in y9 the coefficients in which involve

powers of x. This step is of course unnecessary if the differential

equation is what presented itself in the first instance, the series
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being only an integral of it. Now by taking the terms of this

differential equation in pairs, much as in Lagrange’s method of

expanding implicit functions which is given by Lacroix*, we shall

easily find what terms are of most importance when x is large: but

this step will be best understood from examples. In this way we

shall be led to assume for the integral a circular or exponential

function multiplied by a series according to descending powers of x,

in which the coefficients and indices are both arbitrary. The

differential equation will determine the indices, and likewise the

coefficients in terms of the first, which remains arbitrary. We
shall thus have the complete integral of the differential equation,

expressed in a form which admits of ready computation when x is

large, but containing a certain number of arbitrary constants,

according to the order of the equation, which have yet to be deter-

mined.

For this purpose it appears to be generally requisite to put the

infinite series under the form of a definite integral, if the series be

not itself the developement of such an integral which presented

itself in the first instance. We must now endeavour to determine

by means of this integral the leading term in f[x) for indefinitely

large values of x> a process which will be rendered more easy by

our previous knowledge of the form of the term in question, which

is given by the integral of the differential equation. The arbitrary

constants will then be determined by comparing the integral just

mentioned with the leading term in /(#).

There are two steps of the process in which the mode of pro-

ceeding must depend on the particular example to which the

method is applied. These are, first, the expression of the ascending

series by means of a definite integral, and secondly, the determina-

tion thereby of the leading term in f (x) for indefinitely large

values of x. Should either of these steps be found impracticable,

the method does not on that account fall to the ground. The arbi-

trary constants may still be determined, though with more trouble

and far less elegance, by calculating the numerical value of f (x)

for one or more values of x
}
according to the number of arbitrary

constants to be determined, from the ascending and descending

series separately, and equating the results.

* Tralti du Calc id, &c. Tom. i. p, 101.
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In this paper I have given three examples of the method just

described. The first relates to the integral W, the second to an

infinite series which occurs in a great many physical investigations,

the third to the integral which occurs in the case of diffraction

with a circular aperture in front of a lens. The first example

is a good deal the most difficult. Should the reader wish to see

an application of the method without involving himself in the

difficulties of the first example, he is requested to turn to the

second and third examples.

FIRST EXAMPLE.

1. Let it be required to calculate the integral

W
=

J

cos
^ (w

3 — mw
)
dio (l)

;

for different values of m, especially for largo values, whether posi-

tive or negative, and in particular to calculate the roots of the
equation W— 0.

2. Consider the integral

« =JV (cos +V -1 »in 3»)W- nx)
dx ^

where 9 is supposed to lie between — w/G and + w/G, in order that
the integral may be convergent.

Putting x = (cos 0 — V-l sin 6) z,

we get dx = (cos 8 - V— 1 sin (9) dz, and the limits of z are 0 and co
;

whence, writing for shortness

P = (cos 29 + v~l sin 20) n ^
we get u — (cos 0 —V— 1 sin

9)j
e-C^-pr) dz*. .(4).

* The legitmmoy of tllis transformation rests on tbo theorem that if fit) lie acontinuous function of *, which does not become infinite for any real or imaginarybut fimte value of z, we shall obtain the same result for tho integral of flxUx
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3. Let now 8
,
which hitherto has been supposed less than nr/6,

become equal to 7r/6. The integral obtained from (2) by putting

8 = 7t/6 under the integral sign may readily be proved to be con-

vergent. But this is not sufficient in order that we may be at

liberty to assert the equality of the results obtained from (2), (4) by
putting 8 — 7r/6 before integration. It is moreover necessary that

the convergency of the integral (2) should not become infinitely

slow when 8 approaches indefinitely to nr/6, in other words, that if

X be the superior limit to which we must integrate in order to

render the remainder, or rather its modulus, less than a given

quantity which may be as small as we please, X should not become
infinite when 8 becomes equal to 7t/6*. This may be readily

proved in the present case, since the integral (2) is even more

convergent than the integral

r
20 /—

*

I
V -1 sin 30 (x?-nx)

J o

which may be readily proved to be convergent.

Putting then 6 = ir/6 in (2) and (4), we get

r̂
cos (a?

0

/'OO

— nx) dx— V— 1 1 sin (of — nx) dx . .

.

*

0

...(5),

u = (^cos

\

~ _ V— 1 sin
J

dz - (6),

where p= (^cos ~ 4- V— 1 sin n ...(7).

Let u= U- V^lEP,

and in the expression for U got from (5) put

X
(ir\4 (nr\?=
{i)

w
’

W ~\2
/
m ..(8);

then we get w-(lY ir ... (9).

the limits of x are 0 and real infinity, and accordingly we may first integrate with

respect to z from 0 to a large real quantity z1% & (which is supposed to be written

for 6 in the expression for x) being constant, then leave z equal to z1 ,
make 6' vary,

and integrate from 6 to 0, and lastly make z1 infinite. But it may be proved

without difficulty (and the proof may he put in a formal shape as in Art. 8), that

the second integral vanishes when z
1
becomes infinite, and consequently we have

only to integrate with respect to z from 0 to real infinity.

* See Section m. of a paper “On the Critical Values of the sums of Periodic

Series.” Camb. Phil. Trans

.

Vol. vni. p. 561. [Ante, Yol. r. p. 279.]
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4. By the transformation of u from the form (5) to the form

(6), we are enabled to differentiate it as often as we please with

respect to n by merely differentiating under the integral sign. By-

expanding the exponential e
pz

in (6) we should obtain i^and there-

fore TJy in a series according to ascending powers oin. This series

is already given in Mr Airy's Supplement. It is always conver-

gent, but is not convenient for numerical calculation when n is

large.

We get from (6)

cU
dp* -f * (

C0S V - 1 Si" s) /,
(‘'-3

= 5 f
CO!i 7-

— V — .1 sin
’

6

which becomes by (7)

n ,— -

(10).

Equating to zero the real part of the first member of this
equation., we get

au n
dn2 4-k£T = 0. fll).

5.
'

We might integrate this equation by series according to
ascending powers of n, and we should thus get, after determining
the arbitrary constants, the series which have been already
mentioned. What is required at present is, to obtain for U an
expression 'which shall be convenient when n is large.

The form of the differential equation (11) already indicates
the general form of U for large values of re. For, suppose re largoand positive, and Jet it receive a small increment Sn. Then the
proportionate increment of the coefficient «/3 will be very small-

s” “

cr- Jr“«{v/g).S»} + Vaa{y(5).8„J ... (12) .

notZf:I,'T’Td

T“ *” lein« ’-Mck doc.

° ° ** The approximate integral (12) points out
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3 existence of circular functions such as cos sin f(n) in the

le integral; and since */(n/3) • must be the small increment

f (n), we get f(n) = § \/(n
s
/'3), omitting the constant, which it is

necessary to add. When n is negative, and equal to — n\ the

ne reasoning would point to the existence of exponentials with

I V(^
3

/3) in the index. Of course the exponential with a posi-
re index will not appear in the particular integral of

(
11

)
with

lich we are concerned, but both exponentials would occur in the

rnplete integral. Whether n be positive or negative, we may, if

5 please, employ exponentials, which will be real or imaginary

the case may be.

6 . Assume then to satisfy
(
11

)

IT = e i J-j
{
An« + + Cny + ...}* (13),

acre A
,
B, G... a

, /3, 7 ... are constants which have to be deter-

incd. Differentiating, and substituting in (11), we get

a (a- l)<4»«-* + 1 Bn?-2 + ...

+
2V3

{(4a + 1) Ana ~* + (4/3 + 1) ...j = 0.

As we want a series according to descending powers of n, we

ust put

4a-fl = 0, /3 = a = §, 7= /3-§...

* The idea of multiplying the circular functions by a series according to de-

ending powers of n was suggested to me by seeing in Moigho’s Repertoire d'optique

iderne, p. 189, the following formulas which M. Cauchy has given for the calcu-

tion of Fresnel’s integrals for large, or moderately large, values of the superior

nit

:

I cos - z2dz~i-N cos ~ +M sin- m2
;

Jo 2 1 A

Cm iff 7f /jf

I sin - z2dz—l -M cos
^
m2 - IV sin - m2

;

here LA - A* + L*-J :1 ..... N= j- - 1 •_* • 5
,

mir nfiir3 m9
7r
5 9 m-V2 m7n4

The demonstration of these formulae will he found in the 15th Volume of the

omptes Rendus, pp. 554 and 57S. They may he readily obtained by putting

z%z=2x, and integrating by parts between the limits \trm2 and co of x.
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•whence

JJ= An~1 \J- 1.5 J - 1 1.5.7.11/ J-l V

1 16V(SnV 1.2 U'6V(3»')/

1.5.7.11.13.17/ J-1 \
s

1

1.2.3 U6V(3»*)/
+

"‘J
(14).

By changing the sign of \/( — 1) both in the index of e and in the

series, writing B for A, and adding together the results, we shall

obtain the complete integral of (11) with its two arbitrary con-

stants. The integral will have different forms according as n is

positive or negative.

First, suppose n positive. Putting the function of n of which

A is the coefficient at the second side of (14) under the form

P -b — 1) Q, and observing that an expression of the form

A(P +J^lQ) + B(P-J^lQ),

where A and B are imaginary arbitrary constants, and which is

supposed to be real, is equivalent to AB + BQ, where A and B are

real arbitrary constants, we get

U= An-
1
(r cos I + S sin f j)

+ (R sin f<Jj-S cos f Jfj
where

1.5.7.11 1.5.7.11.13.17.19.23U ~ l
i . 2. 162

. 3n3 + ~
1 . 2.3. 4.164

. 3

V

1.5 1.5. 7 .11.13.17
~

1 . 16 (3»*)*• 1

.

2 .3 . 16
s (3n3

)%

(15),

...(16).

Secondly, suppose n negative, and equal to —n. Then, writing

— n for n in (14), and changing the arbitrary constant, and the

sign of the radical, we get

o /«£

U= Cn’-i €
W 8

1.5 1.5.7.11

1 . 16 (3 ?r
8

j
4
+

1 • 2 . 16

.

3nz

It is needless to write down the part of the complete in-

tegral of (11) which involves an exponential with a positive
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index, because, as has been already remarked, it does not appear

in the particular integral with which we are concerned.

7. When n or n is at all large, the series (16) or (17) are at

first rapidly convergent, but they are ultimately in all cases hyper-

geometrically divergent. Notwithstanding this divergence, we
may employ the series in numerical calculation, provided we do

not take in the divergent terms. The employment of the series

may be justified by the following considerations.

Suppose that we stop after taking a finite number of terms of

the series (16) or (17), the terms about -where we stop being so

small that we may regard them as insensible
;
and let TJ

X
be the

result so obtained. From the mode in which the constants A , B,

(7,... a, /3, y... in (13) were determined, it is evident that if we
form the expression

d2
l7 r7 <PU

t
n' rr

Sf
, +

s
u" "

according as n is positive or negative, the terms will destroy each

other, except one or two at the end, which remain undestroyed.

These terms will be of the same order of magnitude as the terms

at the part of the series (16) or (17) where we stopped, and there-

fore will be insensible for the value of n or n' for which we are

calculating the series numerically, and, much more, for all superior

values. Suppose the arbitrary constants A, B in (16) determined

by means of the ultimate form of U for n = co
,
and C in (17) by

means of the ultimate form of TJ for n = oo . Then TJ
1

satisfies

exactly a differential equation which differs from (11) by having

the zero at the second side replaced by a quantity which is in-

sensible for the value of n or n with which we are at work, and

which is still smaller for values comprised between that and the

particular value, (namely co), by means of which the arbitrary

constants were determined so as to make U
x
and U agree. Hence

U
l

will be a near approximation to U. But if we went too far

in the series (16) or (17), so as, after having gone through^ the

insensible terms, to take in some terms which were not insensible,

the differential equation which TJ
X
would satisfy exactly would

differ sensibly from (11), and the value of U
x
obtained would be

faulty,

s. II. '22
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8. It remains to determine the arbitrary constants A, B, C.

For this purpose consider the integral

Q= fe-*
,+W*dx (18),

J 0

where q is any imaginary quantity whose amplitude does not

lie beyond the limits — 7r/6 and -f nr/6. Since the quantity under

the integral sign is finite and continuous for all finite values of x,

we may, without affecting the result, make x pass from its initial

value 0 to its final value oo through a series of imaginary values.

Let then x = q + y, and we get

where the values through which y passes in the integration are

not restricted to he such as to render x real. Putting y = (3^)“- 1,

where that value of the radical is supposed to be taken which has

the smallest amplitude, we get

Q = (3q)~* dt (19).

The limits of t are — 3%^ and an imaginary quantity with an

infinite modulus and an amplitude equal to |a, where a denotes

the amplitude of q. But we may if we please integrate up to

a real quantity p, and then, putting t= and leaving p
constant, integrate with respect to 6 from 0 to Ja, and lastly put

p = oo . The first part of the integral will be evidently convergent

at the limit oo, since the amplitude of the coefficient of f in the

index does not lie beyond the limits — \ir and -f \nr ;
and calling

the two parts of the integral with respect to t in, (19) Tt
T0 we

get

T=J°° (20),

T
t
= limit(p=oo)p V— 1 /*e-(W"V*V=i-^V=i+«V=i d0...(21).

Jo

We shall evidently obtain a superior limit to either the real or

the imaginary part of T
i
by reducing the expression under the

integral sign to its modulus. The modulus is e~® where

® = (3c) p
%
cos (3(9 - |a) + p

2
cos 28,

c being the modulus of q. The first term in this expression is
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never negative, being only reduced to zero in the particular case

in which 0 — 0 and cl —

±

7r/C. The second term is never less than

0
2
cos J-7r or fp

2

,
and is in general greater. Hence both the real

and the imaginary parts of the expression of which is the limit

are numerically less than fape-^p2
,
which vanishes when p

— oo
,

and therefore T
4 — 0. Hence we have rigorously

Q = (3q)-*&*T (22).

Let us now seek the limit to which T tends when c becomes
infinite. For this purpose divide the integral T into three parts

Tv T
2 ,
T

8 ,
where T

x
is the integral taken from — 3%- to areal

negative quantity — a, T
2
from — a to a real positive quantity 4- b,

and T
z
from b to go

;
and suppose c first to become infinite, a and b

remaining constant, and lastly make a and b infinite.

Changing the sign of t in and the order of the limits, we get
rZ^c*

r
t
= e(3q)~h*-& fa'

Pat t — pe9sJ(- *>. Then we may integrate first from p — a to

p-SM while e remains equal to 0, and afterwards from 0 — 0

to 0 = a while f p remains equal to 3M. Let the two parts of the

integral be denoted by T\ T"

.

We shall evidently obtain a

superior limit to T by making the following changes in the

integral : first, replacing the quantity under the integral sign by
its modulus

;
secondly, replacing f in the index by the product

of f and the greatest value (namely 3M) which t receives in the

integration
;
thirdly, replacing a by the smallest quantity (namely

0) to which it can be equal, and, fourthly, extending the superior

limit to oo . Hence the real and imaginary parts of T' are both

/

*>

e”^
2

dt
,
a quantity which vanishes iin the

limit, when a becomes infinite.

We shall obtain a superior limit to the real or imaginary part

of T" by reducing the quantity under the integral sign to its

modulus, and omitting Vt— 1) in the coefficient. Hence L will be

such a limit if

-^A6
) d0f where f (0) = 3 cos 20 — cos (30 — fa).

We may evidently suppose a to be positive, if not equal to zero,

since the case to which it is negative may be reduced to the case

22—2
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in which it is positive by changing the signs of a and 9. When
0 = 7r/6, the first term in f{6) is equal to

f,
which, being greater

than 1, determines the sign of the whole, and therefore f(6) is

positive; and f(6) is evidently positive from 6 — 0 to 0 = 77-/6,

since for such values cos 26 > f . Also in generalf (6)
— — 6 sin 2 9

*4- 3 sin (30 — fa), which is evidently positive from 6 = tt/6 to

0 = 7t/4, and the latter is the largest value we need consider, being

the extreme value of 9 when a has its extreme value tt/6. When
6 has its extreme value fa,/(0) = 2 cos 3a, which is positive when

a < 7r/6, and vanishes when a — tt/6. Hence f{6) is positive when

6 <fa; for it has been shewn to be positive when 0< 77-/6, which

meets the case in which a < 77-/9 or = tt/9, and to be constantly

decreasing from 6 — 7t/6 to 6 — fa, which meets the case in which

6 > 7t/9. Hence when a < 7r/6 the limit of L for c = 00 is zero,

inasmuch as the coefficient of c
3
in the index of e is negative and

finite
;
and when a = tt/6 the same is true, for the same reason,

if it be not for a range of integration lying as near as we please to

the superior limit. In this case put for shortness f(9) = 8, regard

fa — 6 as a function of §, F (S), and integrate from 8 — 0 to 8 =
where /3 is a constant which may be as small as we please. By
what precedes, jF'(S) will be finite in the integration, and may
be made as nearly as we please equal to the constant F' (0) by

diminishing /3. Hence the integral ultimately becomes

Si.P(0)e» [V-A
J 0

which vanishes when c becomes infinite. Hence the limit of T
1

is zero.

p00

We have evidently T
z < e~ t2 dt

,

J b

which vanishes when b becomes infinite. Hence the limit of T
is equal to that of T

2
. Now niaking c first infinite and afterwards

a and 6, we get

limit of T
2
= limit of

f
e~

£Z dt= f e~ t2 dt =
J —a J — 00

and therefore we have ultimately, for very large values of c,

(
22).
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In order to apply this expression to the integral u given by (6),

we must put

3q
2 = lie*

V 1

, whence q = e^
V_1

,

6-^(f)* =jaL e-^\ 2g. = 2f")
#
V=T,

V3qj (ZvM
* * V3

)

\3qJ (3n)i

whence we get ultimately

u=
(3m)*

• (23>-

Comparing with (15) we get

A = B-.

9. We cannot make n pass from positive to negative through

a series of real values, so long as we employ the series according

to descending powers, because these series become illusory when
n is small. When n is imaginary we cannot speak of the integrals

which appear at the right-hand side of (5), because the exponential

with a positive index which would appear under the integral signs

would render each of these integrals divergent If however we
take equation (6) as the definition of u

,
and suppose U always

derived from u by changing the sign ofy(— 1) in the coefficient

of the integral and in the value of p, but not in the expression

for n, and taking half the sum of the results, we may regard u
and U as certain functions of n whether n be real or imaginary.

According to this definition, the series involving ascending integral

powers of n, which is convergent for all values of n, real or imagi-

nary, however great be the modulus, will continue to represent u

* This result might also have been obtained from the integral U in its original

shape, namely, f cos (sc3 - nx) dx> by a method similar to that employed in Art. 21.

J°
If x% be the positive value of x which renders x2 -nx & minimum, we have x1 —d~'hi

k
.

Let the integral XJ be divided into three parts, by integrating separately from x—0
to x=x1

- a, from x=x1
- a to x~x1+ 6, and from x—x^^+b to £c=oo

; then make n
infinite while a and 6 remain finite, and lastly, let a and b vanish. In this

manner the second of equations (23) will be obtained, by the assistance of the

known formulae

cos x2dx = sin x*dx— 2“ i 7r£.
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when 7i is imaginary. The differential equation (11), and conse-

quently the descending series derived from it, will also hold good
when n is imaginary

;
hut since this series contains radicals, while

IT is itself a rational function of n, we might expect beforehand

that in passing from one imaginary value of n to another it should

sometimes be necessary to change the sign -of a radical, or make
some equivalent change in the coefficients A

,
B. Let n— n

1
e
v^l)

where n
x

is positive. Since both values of 2 (n/3)% are employed

in the series, with different arbitrary constants, we may without

loss of generality suppose that value of rfi which has for its

amplitude to be employed in the circular functions or exponentials,

as well as in the expression for S. In the multiplier we may
always take — r/4 for the amplitude of n~i by including in the

constant coefficients the factor by which one fourth root of n differs

from another; but then we must expect to find the arbitrary

constants discontinuous. In fact, if we observe the forms of R
and S, and suppose the circular functions in (15) expanded in

ascending series, it is evident that the expression for U will be

of the form

An~*N -f Bn* N' (25),

where N and N' are rational functions of n. At least, this will be

the case if we regard as a rational function a series involving de-

scending integral powers of n, and which is at first rapidly con-

vergent, though ultimately divergent, or rather, if we regard as

such the function to which the convergent part of the series is a

very close approximation when the modulus of n is at all large.

Now, if A and B retained the same values throughout, the above

expression would not recur till v was increased by 877-, whereas 17

recurs when v is increased by 27r. If we write v + r for v, and

observe that N and N' recur, the expression (25) will become

- JST 4- N'

;

and since Urecurs it appears that A> Bbecome V(““l) A , —V(—1)1?,

respectively, when v is increased by 27r. Also the imaginary part

of the expression (25) changes sign with v> as it ought; so that, in

order to know what A and B are generally, it would be sufficient

to know what they are from v = 0 to v = tt.

If we put w
1
e
,rV<’ l> for n in the second member of equation (15),

aud write /3 for 2 . and Rv S1
for what JS, S become when
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is put for n in the second members of equations (16) and all

the terms are taken positively, we shall get as our result

l e" i
V~\-i {(A ~ lB

) (A + A e3 + (4+7- IB) (R- 8\) «-*}.

Now the part of this expression which contains (i?
1 + ought

to disappear, as appears from (17). If we omit the first part of

the expression, and in the second part put for A and B their values

given by (24), we shall obtain an expression which will be identi-

cal with the second member of (17) provided

0 =
7

r

J

2.3*
(26).

This mode of determining the constant C is anything but satis-

factory. I have endeavoured in vain to deduce the leading term

in U for n negative from the integral itself, whether in the original

form in which it appears in (5), or in the altered form in which it

is obtained from (6) *. The correctness of the above value of G
will however be verified further on.

10. Expressing n
,
U in terms of m, W by means of (8) and

(0), putting for shortness

, ~ (n\f /m\t
*- 2

U) -*{J) V
(2 '>'

where the numerical values of m and n are supposed to be taken

when these quantities are negative, observing that 16 \Z(3?i
8

)
= 72cp,

and reducing, we get when m is positive

W= 2* (3m) “* jfl cos ($
-
1)

+ a sin (</> -
^j}

• • -(28),

where
1.5.7.11 1.5.7.11.13.17.19.23 1

li ~ 1
l.’2(72cf>r

+ 1.2.3.4(72^
(29)

1.5 1.5.7.11.13. 17
j

'

-
1.720 1.2.3(72(j>)

3

When to is negative, so that W is the integral expressed by writ-

ing — to for m in (1), we get

1.5.7.11

1 .

2

(720)
2

[» The difficulty was overcome in a later paper entitled 4‘On the discontinuity

of arbitrary constants which appear in divergent developments.” ( Transactions

of the Cambridge Philosophical Societg, Yol. x. p. 105.)]
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11. Reducing the coefficients of in the series (29)

for numerical calculation, we have, not regarding the signs,

order (i) (ii) (iii)

logarithm 2-841638; 2*569766; 2-579704;

coefficient -0694444; -0371335; -0379930;

(iv) (v)
_

(vi)

2-760793; 1-064829; 1-464775;

•0576490; -116099; -291592.

Thus, for m = 3, in which case <£=.7r, we get for the successive

terms after the first, which is 1,

*022105, -003762, -001225, *000592, *000379, *000303..

We thus get for the value of the series iu (30), hy taking half the

last term but one and- a quarter of its first difference, *980816;

whence for m = 3, W= x *980816e -7r = *0173038, of which the

last figure cannot be trusted. Now the number given by Mr Airy

to 5 decimal places, and calculated from the ascending series and

by quadratures separately, is *01730, so that the correctness of the

value of C given by (26) is verified.

For m = -f 3 we have from (28)

W= - 3~* (*9965 - *0213) = - *5632,

which agrees with Mr Airy’s result —*56322 or — *56323. As m
increases, the convergency of the series (29) or (30) increases

rapidly.

12. The expression (28) will be rendered more easy of numeri-

cal calculation by assuming ii!= If cos $= lfsim/r, and ex-

panding M and tan i/r in series to a few terms. These series will

evidently proceed, the first according to even, and the second

according to odd inverse powers of </>. Putting the several terms,

taken positively, under the form 1, a(fT
1

, ab$T
2

,
abccj)~\ abcdfr

4
,
&c.,

and proceeding to three terms in each series, we get

M= 1 - a (b -
1)

+ a
|
be (d - a) + (b - ?)} .

.

(31),

tan ^ = cKf)"
1 — ab (c — a) </T

3
-f ah [cd (e — a) — ah (io-a

)
} .

.
(32).

The roots of the equation W= 0 are required for the physical

problem to which the integral W relates. Now equations (28),
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(±1)) show that 'when mis at all large the roots of this equation are

given very nearly hy the formula —
J) mr, where i is an inte-

ger. From, the .definition of ^ it follows that the root satisfies

exactly the equation

= ^ (33).

By means of this equation we may expand
<f>

in a series according

to descending powers of <£>, where <3> = (i— J) 7r. For this purpose

it will be convenient first to expand f in a series according to

descending powers of <p, by means of the expansion of tarn
-1
x and

the equation (32), and having substituted the result in (33) to

expand hy Lagrange’s theorem. The result of the expansion

carried as far as to <E>"
5
is

<$> = cb + a<£>~
1 - [ab (c - a) +K + a2

}
<T3

+ {ab [cd (e — a) — ab (c — a)] + a3
b (c - a) 4- £a

5

-f 4a [ab (c— a) + Ja
3

]
4- 2a

3

}
<3?

5
(^)*

let

13. To facilitate the numerical calculation of the coefficients

a 7 _ V
. c _ • &ca = y~J) 5

° ^—n >
c “7 o n j

06U »

2.D’ 3.D

and let the coefficients of <T in (31) he put under the forms

^2 A
. and similarly with respect to (32), (34).

” 1.2D” 1.2.3.4D4

Then to calculate W for a given value of m, we have

where

.

‘ w= 24 (3m)

M

cos (<#> - ^
-

-f
)

•

M= 1 - ^

tan =
j

-
y) $

* 1.2. 3.D
3 ^ +

1 . 2 . 3 . 4 - 5jD

and for calculating the roots of the equation F= 0, we have

^ ^-1 ®-3+r—^A-rr^"3-(38)'

c.
i

<#>'*+•

(35),

(36).

<r-(37),

rh
'1
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The coefficients in these formulae are given by the equations

A,
t
= a (&' - a,'); Ai = a' [b'c (X - 4a!) + 3a'

2
(2

V

- a')]

)

G
1
— a'; C

3 = ab’ (c - 3a')
; C5 = ah' [c'd' (e - 5a) - 10 C'j

E
t
= a'; E

%
= G^ + 2a'

2 (3D + a')

’

D
5
= C

5 + 20a (4D + a') 0
3 + 24a'

5 + 80a'
8
2) (3D + 2a')

.

(39).

14. Putting in these formulae

a' = 1.5; £>'= 7.11; o' = 13 . 17; d' = 19 . 23; e = 25 . 29; D = 72;

we get
#

J.
2
= 5.72; J.

4
= 3.5.72

2
.4-57; C

x
= 5; C

s
= 2.5.7.11.103;

C
5
= 4s

. 5
3.7U 1.23861; D

x
=5; D

s
= 72.1255; D

6
=4.53

.72
2

. 10883:

whence we obtain, on substituting in (36), (37), (38),

M= 1 J_ ,-2 2285

144 ^ +
41472

tan
39655 321526.975

1119744
* +

2902376448^ ’

0 = $ +
1255 272075

31104
^ +

2239488
<Jr5.

Reducing to decimals, having previously divided the last equatior

by 7r, and put for <3> its value (i— •£) 7r, we get

M= 1 - -034722 cf>-
3+ -055097 <£'4 (40),

tani|r = •069444^-1 --035414<^-3+ T10781^-5
(41),

4> -
,05

'028145 -026510 -129402

7T
+ 4?-l (4i-l)3 + (4f-l)5

15. Supposing i= 1 in (42), we get

£ = -75 + -0094 - -0010 + 0005 = -7589;
7T

whence m== 3 ($/7r)^ == 2*496. The descending series obtained i;

this paper fail for small values of m; but it appears from Mr Airy’

table that for such values the function W is positive, the firg

change of sign occurring between m = 2*4 and m = 2*6. Hence th

integer i in (42) is that which marts the order of the root, j

more exact value of the first root, obtained by interpolation froi

Mr Airy’s table, is 2*4955. For 1 the scries (42) is not convo
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gent enough to give the root to more than three places of decimals,
hut the succeeding roots are given by this series with great
accuracy. Thus, even in the case of the second root the value of

the last term, in (42) is only ’000007698. It appears then that

this term might have been left out altogether.

1^. To determine when W is a maximum or minimum we
must put dW/dm = 0. We might get dW/dm by direct differen-

tiation, but the law of the series will be more easily obtained from

the differential equation. Resuming equation (11), and putting

V for dU/dn,
we get by dividing by n and then differentiating

£r_^z:+*7_ 0
dn2, n dn

+
3

This equation may be integrated by descending series just as

before, and the arbitrary constants will be determined at once by

comparing the result with the derivative of the second member

of (15), in which A, B are given by (24). As the process cannot

fail to be understood from what precedes, it will be sufficient to

give the result, which is

V= 3-*ttM ' R'

cos
(<£
+ + S

’

sin
(0 + f)}

where

— 1.7.5.13 -1.7.5.13.11.19.17.25 1

1{ = 1 “ T.2(7W
+ 0.3.4 (72

-

(M) _

0,
-1.7 -1.7.5.13. 11.19 ,

6 =
I?72lp~ 1. 2.8(72$)* J

17. The expression within brackets in (43) may be reduced

to the form ilf cos (j+irr-f) just as before, and the formuUe

of Art. 13 will apply to this case if we put

«' = -1.7; 6' = 5.13; c' = 11.19; Sat., D = 72.

The roots of the equation dW/dm = 0 are evidently the same as

those of V— 0. They are given approximately by the formuk

and satisfy exactly the equation <#> = (»- }>* + +•

The^ root corresponding to any integer « may be expanded m a

series according to' the inverse odd powers of 4* - 3 by the formulae
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of Art. 13. Putting (i — f) 7r for <E>, and taking the series to three .

terms only, we get

E = - 7; #3 = — 84168;

whence ^ +Mh^ 5

or, reducing as before,

-03940 3* -02469:3

7r
^ °

4ii — 3 (4i — 3)
§ (45).

This series will give only a rough approximation to the first

root, hut will answer very well for the others.

For i = l the series gives if1

$ = *25 — *039 + ‘025, which

becomes on taking half the second term and a quarter of its first

difference *25 - *019 — *004 = *227, whence m= 1T2. The value

of the first root got by -interpolation from Mr Airy’s table is 1*0845.

For the second and third roots we get from (45)

for 2, tt'
1 = 1*25 - *00788 -1- '00020 = 1*24232

;

for i = 3, tT
1

cj> = 2*25 - *00438 4- *00003 = 2*24565.

For higher values of i the last term in (45) may be left out

altogether.

18. The following table contains the first fifty roots of the

equation W= 0, and the first ten roots of the derived equation.

The first root in each case was obtained by interpolation from

Mr Airy’s table; the series (42) and (45) were sufficiently con-

vergent for the other roots. In calculating the second root of

the derived equation, a rough value of the first term left out in

(45) was calculated, and its half taken since the next term would

be of opposite sign. The result was only ~ *000025, so that the

series (45) may be used even when i is as small as 2. By far

the greater part of the calculation consisted in passing from the

values of 7

r

-1
<£ to the corresponding values of m. In this part

of the calculation 7-figure logarithms were used, in obtaining the

value of \m, and the result was then multiplied by 3.

A table of differences is added, for the sake of exhibiting the

decrease indicated by theory in the interval between the con-

secutive dark bands seen in artificial rainbows. This decrease

will be readily perceived in the tables which contain the results
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of Professor Miller’s observations*. The table of the roots of the

derived equation, which gives the maxima of W2
,
is calculated for

the sake of meeting any observations which may be made on the

supernumerary bows accompanying a' natural rainbow, since in

that case the maximum of the red appears to be what best admits

of observation.

i m diff. i m diff.

1

2

3
4
5

6

7

8

9

10
11

12
13
14
15
16

17

18
19

20
21

22
23
24
25

2-4955

4-

3631
1 8676

5-8922
1-3514

7-

2436 \fJ±
8-4788

1-1512

10-7161
1-0861

‘S

12-

7395 ,

9899

13-

6924
9529

14-

6132
9208

15-

5059

16-

3735
8676

17-

2187
8452

18-

0437

18-

8502 ;

8065

19-

6399 i
89 '

20-

4139 ' L‘£l
21-1736 -7463

21-

9199

22-

6536 ‘iii

23-

3757 if"

24-

0868 ‘iii
24-7876 -6909
25-4785 -6817

26
27
28
29
30
31

32
33
34
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

26-1602

26-

8332

27-

4979
6647

28-

1546
656-7

28-

8037
6491

29-

4456
84

tX

30-

0805
6349

30-

7089
6284

31:3308
8
f
49

31-

9467 ,

6 59

32-

5567
33-1610 -5989

33-

7599 ,

5989

34-

3535
5936

34-9420
5885

. 35-5256
, ™

36-1044
,

5

f

88

36-

6786 ?rqq

37-

2484 |
698

.

37-

8139 ,

56
f|

38-

3751 .5572

38-

9323 '5532
39-4855 -5494

40-

0349
5494

40-5805
5456

1

2

3

4

5

7
;

0845
2-3824

3 4669
1

5*1446 .

6-5782
1-2903

7-8685 i-SS

6
7
8
9

10

9-0599

10-

1774 1 1110

11-

2364
I'

0™

12-

2475
1 01

f

1

13*2185
yau

Cambridge Philosophical Transactions
,
Yol. vii. p. 277.
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SECOND EXAMPLE.

19. Let us take the integral

fJ 0

x2
x*

cos (cc cos 6) d6 = 1 — ^2 + ^i"2
'

2*42
6
*+•••* (46)

which occurs in a great many physical investigations. If we

perform the operation x . d/dx twice in succession on the series

we get the original series multiplied by — x2
> whence

d2u 1 du A

T^xdx + U = 0 (47).

20. The form of this equation shews that when x is very

large, and receives an increment $%, which, though not necessarily

a very small fraction itself,, is very small compared with x, u is

expressed by A cos hx + B sin $x, where under the restrictions

specified A and B are sensibly constant-)-. Assume then, according

to the plan of Art. 5,

u = {Ax- + Bx& + ...} (48).

On substituting in (47) we get

./Zl |(2a -f 1) Ax-' 1+ (2/3+ 1) Bx^ 1 + . . .}

+ a2Axa~ 2 4* fi
2B& ~ 2 + . . . = 0 .

Since we want a descending series, we must put

2a

+

1 = 0 ; /3 = a — 1
; 7 = ^3 — 1

;

(20 + l)B =J^la2A; (2<y + 1) C ;

* This integral has been tabulated by Mr Airy from x~0 to a?=10, at intervals

of 0*2. The table will be found in the 18th Volume of the Philosophical Magazine
,

page 1.

+ That the 1st and 3rd terms in (47) are ultimately the important terms, may
readily be seen by trying the terms two and two in the way mentioned in the intro-

duction. Thus, if we suppose the first two to be the important terms, we get

ultimately U=A or TJ—B log x, either of which would render the last term more

important than the 1st or 2nd, and if we suppose the 2nd and 3rd to be the

important terms, we get ultimately u=Ac~x*^, which would render the first term

more important than either of the others.
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« = -£; £ = — f; y = -f...

;

r.32
.5

2

' 1X378= (n/-1)
3
A....

Substituting in (48), reducing the result to the form

A(P + V-1Q),

adding another solution of the form B (P -JZiQ), and changing
the arbitrary constants, we get

% = Ax~^ (R cos x + S sin as) + Bx~^ (B sin a: - S cos a?) ....(49),

where
1
2
.3

2
1

2
.3

2

.5
2
.7

2

^ = 1 “ TUSxj* +
1. 2.3.4 (8a:)

4 "•

I
s 1*.3V5*

•

1.8a: 1.2.3 (8a?)
3 +

21. It remains to determine the arbitrary constants A, B. In

equation (46) let cos 0 = 1 — //,, whence

where

sin 6 (2/*-/)* (2/x)*

M=(2
/
,~

/,
2)-^(2

/,)~^

4- ATdfiy

a quantity which does not become infinite between the limits of

Substituting in (46) we get

u ==— f cos {(1 — fi) x] /A”* d/j,A — [
cos {(1 — fjb) x) Mdfi... (51).

By considering the series whose term is the part of the,

latter integral, for which the limits of fju are nirx
1 and (n + 1) nraf

1

respectively, it would be very easy to prove that the integral has

a superior limit of the form Hx~l

,
where H is a finite constant,

and therefore this integral does not furnish any part of the leading

terms in u. Putting fix = v in the first integral in (51), so that

dfjb = x~~*.v~% dv,

I
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observing that the limits of » are 0 and *, of which the latter

ultimately becomes co ,
and that

r00 /7T

I"

cos v v~ i d/j,= 2
I

cos VdX. = y/ jT

*00 C 00

= 2 sin X2d\ = sin v . v~- dv,

Jo Jo

we get ultimately for very large values of x

u = (wx)~i (cos x + sin x).

Comparing with (49) we get

A = B=tt-K

whence

For example, when # = 10 we have, retaining 5 decimal places

in the series,

1 — -00070 + *00001 = -99931
;
S= ‘01250 - *00010 = ‘01240

Angle at - J = 527° ’95780 = 3 x 180° - 12° 2' 32"
; .

T

whence u'= — *24594, which agrees with the number (—‘2460)

obtained by Mr Airy by a far more laborious process, namely, by

calculating from the original series.

22. The second member of equation (52) may be reduced to

the same form as that of (28), and a series obtained for calculating

the roots of the equation ^ = 0 just as before. The formulas of

Art. 13 may be used for this purpose on putting

a'=l 2
;

b'= 3
2

;
c' = 5

2

;
&c.; D = 8,

and writing x, X for 0, <£, where X= (i - \) 7r. We obtain

A = A = 3.8*. 53; 1
; ^ = 2 .

3

2
. 11

;

C
6 = 3\4

2
.5.1139; ^ = 1; E% = 8.31; iS;«4\3779;

*
.

TMs expression for u> or rather an expression differing from it in nothing but
notation and arrangement, has been already obtained in a different manner by
&ir William E. Hamilton, in a memoir “ On Fluctuating Functions.” Bee Tranmc-

tigm af the Rayed Irish Academy
, Vol. x,ix. p. 313.
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whence we get for calculating u for a given value of x

M= l-hx* + fkar*,

tan f = ^ af1 - to af
3 + tos*

*"8
,

u=
(£f

Mcos
(
x ~ i~*)

For calculating the roots of the equation’ u= 0 we have

^ =X + iX->- to X-
3 + flto X-°.

Reducing to decimals as before, we get

M= 1 - -0625 af2 + -103516 a:
-1

tan i|r = '125 a;
-1 — '064453 x~

3 + '208557 af
5

« . -050661 '053041 '262051
--4 “0+

4i _ 1 (4*_i)
3 + (4i-l)a

(54)

,

(55)

,

(56)

.

As before, the series (56) is not sufficiently convergent when

i = 1 to give a very accurate result. In this case we get

7T-
1

a? = 75 + *017 - *002 + *001 = *766,

whence #? = 2*41. Mr Airy’s table gives u = -f -0025 for a? = 2*4,

and u = — *0968 for # = 2*6, whence the value of the root is 2*4050

nearly.

The value of the last term in (56) is *0000156 for i = 2, and

*00000163 for i = 3, so that all the roots after the first may be

calculated very accurately from this series.

THIRD EXAMPLE.

23. Consider the integral

rr

2 f
X

f2
v = - I I cos (

x

cos 9) xdx d9
.

7TJ q J o

i= I uxdx =% — +
X

* nru * 1
^

-The senesl -0 + 2 7^.

22
. 4 22

.

4

2
.

6

2v

. — *
*(57),

. or ~ has been tabulated by Mr Airy from :r=0

to sc=12 at intervals of 0-2. See Camb. PhiL Trans. Yol. v. p. 291. The same

function has also been calculated in a different manner and tabulated by M. Schwerd

23s. II.
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which occurs in investigating the diffraction of an object-glass

with a circular aperture.

By performing on the series the operation denoted by

x. d/dx. af
1

. d/dx, we get the original series with the sign

changed, whence

d?v _ 1 dv .

dx2 x dx
V ...(58).

We may obtain the integral of this equation in a form.similar

to (49). As the process is exactly the same as before, it will be

sufficient to write down the result, which is

v — A' x* (R cos x 4- 8 sin x
) + B' x1 (R sin x — 8 cos x) (59),

where

73 _ 1
-1.3. 1.5

,

—1.3. 1/5. 3. 7. 5.

9

1 . 2 (8a:)
2
" +

1 . 2. 3 . 4 (8*)
4 '

o _ — 1 • 3 -1. 3. 1.5. 3.

7

1.8a; 1.2.3 (8a;)
s + ‘"

the last two factors in the numerator of any term being formed by
adding 2 to the last two factors respectively in the numerator of
the term of the preceding order.

The arbitrary constants may be

the equation

^- = ux
dx

easily determined by means of

(61).

Writing down the leading terms only in this equation, we have

xi (~ -4' sin x+ B' cos x) = (cos a: + sin x),
whence

— A' = j
8' -TT-'-t

V=
{v)~

cos ~ t) + ^ sin
(* - t)} (62).

24. Putting in the formula? of Art. 13,

a' = — 1 .3; y = 1.5; c' = 3 . 7 ; d' = 5.9; e'=7.11; R= 8;

and thTtatte atfT areament in the latfer table * the angle 180°/,-
.*

at intemis °f 15° that is
- *- *
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we get

4, = -3.8; i
4
= -3s

.82 .ll; C
t
=- 3; G,= - 2.32

.5
2

;

C„ = - 3
3

.

4

2
.

5

2
. 127

; ^= -3; i?, = -32
.8; X6

= - 3
3

. 4. 8M31

;

whence we get for the formulae answering to those of Art. 22,

M'=l+$rX 2 —
-gYZ X

4

,

tan = — 1 + -fife
x 3 — fYsira *

X being in this case equal to (i + J) tt.

Reducing to decimals as before, we get for the calculation of v

for a given value of x,

M- 1 + '1875 af2 + -193359 af4
(63),

tan f = - -375 af* + -146484 af3 - -.348817 x~
s

(64),

v = if cos ^ (65)

;

and for calculating the roots of the equation t> = 0,

a .
, oe -151982

,
-015399 -245835

j
“ * + '25 - UTT + (15+xf- (S+i? (68) -

25. The following table contains the first 12 roots of each of

the equations u — 0, and x~
2
v = 0. The first root of the former

i ~ for u —

0

7

r

difl.
- for v=0
7

r

diff.

1

2

3
4
5

6

7

8

9

10
11

12

'9916

2-

7546
'9975

3-

7534 !

99®®

4-

7527
9999

6-7522
999

E

6-

7519 .Q397

7-

7516
9997

8-

7514
9999

9-

7513
9999

10-

7512

11-

7511
ajaj

1'2197 i.rvioo
2*2330

3-

2383
}

99
g

4-

2411
799

*S

5-

2428

6-

2439
7
XXii

7-

2448
79999

8-

2454
7 9999

9-

2459
79999

10-

2463
7 999*

11-

2466
7
XX2

9

12-

2469
7 9093

23—2
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was got by interpolation from Mr Airy’s table, the others were

calculated from the series (56). The roots of the latter equation

were all calculated from the series (66), which is convergent

enough even in the case of the first root. The columns which

contain the roots are followed by columns which contain the

differences between consecutive roots, which are added for the

purpose of shewing how nearly equal these differences are to 1,

which is what they ultimately become when the order of the root

is indefinitely increased.

26. The preceding examples will be sufficient to illustrate

the general method. I will remark in conclusion that the pro-

cess of integration applied to the equations (11), (47), and (58)

leads very readily to the complete integral in finite terms of the

equation

dx2

i(i+ 1)
y — 0 (67),

where i is an integer, which without loss of generality may he

supposed positive. The form under which the integral imme-

diately comes out is

y = Ae
qx f

i (i+ 1)

t 1-22

(i - 1) i (i + 1) (i + 2)

1 . 2 (2qx)
2

1) i (i + 1) (

i

+ 2)

1 . 2qx 1 . 2 (2qx)*
+ .

where each series will evidently contain «-f-l terms. It is well

known that (67) is a general integrable form which includes as a

particular case the equation which occurs in the theory of "the

figure of the earth, for q in (67) is any quantity real or imaginary,

and therefore the equation formed from (67) by writing + <£y for

— q
2

y may be supposed included in the form (67).

It may be remarked that the differential equations discussed

in this paper can all be reduced to particular cases of the equation

obtained by replacing 1) in (67) by a general constant. By

taking gr$, where g is any constant, for the independent variable
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in place of n in the differential equations •which J7, V in. the first

example satisfy, these equations are reduced to the form

d2

y 2a dy
da? x ~dx

and (47), (58) are in this form already. Putting now y = x~
a
z, we

shall reduce the last equation to the form required.



[The four following are from the Report of the British Association for 1850,

Part ii. p. 19.]

On the Mobe of Disappearance of Newton’s Rings in passing

THE ANGLE OF TOTAL INTERNAL REFLEXION.

When Newton’s rings are formed between the under surface of

a prism and the upper surface of a lens, there is no difficulty in

increasing the angle of incidence so as to pass through the angle of

total internal reflexion. When, the rings are observed with the

naked eye in the ordinary way, they appear to break in the upper

part on approaching the angle of total internal reflexion, and pass

nearly into semicircles when that angle is reached, the upper edges

of the semicircles, which are in all cases indistinct, being slightly

turned outwards when the curvature of the lens is small.

The cause of the indistinctness will be evident from the follow-

ing considerations. The order of the ring (a term here used to

denote a number not necessarily integral) to which a ray reflected

at a given obliquity from a given point of the thin plate of air

belongs, depends partly on the obliquity and partly on the thick-

ness of the plate at that point. When the angle of incidence is

small, or even moderately large, the rings would not be seen, or at

most would be seen very indistinctly, if the glasses were held near

the eye, and the eye were adapted to distinct vision of distant

objects, because in that case the rays brought to a focus at a given

point o£ the retina would correspond to a pencil reflected at a

given obliquity from an area of the plate of air, the size of which

would correspond to the pupil of the eye; and the order of the

rays reflected from this area would vary so much in passing from

the point of contact outwards that the rings would be altogether
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confused. When, however, as in the usual mode of observation/
the eye is adapted to distinct vision of an object at the distance of
the plate of air, the rings are seen distinctly, because in this case
the rays proceeding from a given point of the plate of air, and
entering the pupil of the eye, are brought to a focus on the retina,
and the variation in the obliquity of the rays forming this pencil
is so small that it may be neglected.

When, however, the angle of incidence becomes nearly equal to

that of total internal reflexion, a small change of obliquity pro-
duces a great change in the order of the ring to which the reflected

ray belongs, and therefore the rings are indistinct to an eye
adapted to distinct vision of the surfaces of the glass. They are

also indistinct, for the same reason as before, if the eye be adapted
to distinct vision of distant objects.

To see distinctly the rings in the neighbourhood of the angle

of total internal reflexion, the author used a piece of -blackened

paper in which a small hole was pierced with the point of a

needle. When the rings were viewed through the needle-hole,

in the light of a spirit-lamp, the appearance was very remarkable.

The first dark hand seen within the bright portion of the field of

view where the light suffered total internal reflexion was some-

what bow-shaped towards the point of contact, the next still more

so, and so on, until at last one of the bands made a great bend and

passed under the point of contact and the rings which surrounded

it, the next band passing under it, and so on. As the incidence

was gradually increased, the outermost ring united with the bow-

shaped band next above it, forming for an instant a curve with a

loop and two infinite branches, or at least branches which ran out

of the field of view : then the loop broke, and the curve passed

into a bulging band similar to that which had previously sur-

rounded the rings. In this manner the rings, one after another,

joined the corresponding bands till all had disappeared, and nothing

was left but a system of bands which had passed completely below

the point of contact, and the central black spot which remained

isolated in the bright field where the light suffered total internal

reflexion. Corresponding appearances were seen with daylight or

candlelight, but in these cases the bands were of course coloured,

and not near so many could be seen at a time.
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On Metallic Beflexion.

The effect which is produced on plane-polarized light by re-

flexion at the surface of a metal, shews that if the incident light

be supposed to be decomposed into two streams, polarized in and

perpendicularly to the plane of reflexion respectively, fixe phases as

well as the intensities of the two streams are differently affected

by the reflexion. It remains a question whether the phase of

vibration of the stream polarized in the plane of reflexion is acce-

lerated or retarded relatively to that of the stream polarized per-

pendicularly to the plane of reflexion. This question was first

decided by the Astronomer Boyal, by means of a phenomenon

relating to Newton’s rings when formed between a speculum and

a glass plate. Mr Airy’s paper is published in the Cambridge

Philosophical Transactions. M. Jamin has since been led to the

same result, apparently by a method similar in principle to that of

Mr Airy. In repeating Mr Airy’s experiment, the author expe-

rienced considerable difficulty in observing the phenomenon. The

object of the present communication was to point out an extremely

easy mode of deciding the question experimentally. Light polar-

ized at an azimuth of about 45° to the plane of reflexion at the

surface of the metal was transmitted, after reflexion, through a

plate of Iceland spar, out perpendicular to the axis, and analysed

by a Nicol’s prism. When the angle of incidence was the smallest

with which the observation was practicable, on turning the Nicol’s

prism properly the dark cross was formed almost perfectly; but on

increasing the angle of incidence it passed into a pair of hyperbolic

brushes. This modification of the ring is very well known, having

been described and figured by Sir D. Brewster in the Philosophical

Transactions for 1830. Now the question at issue may be imme-
diately decided by observing in which pair of opposite quadrants

it is that the brushes are formed, an observation which does not

present the slightest difficulty. In this way the author was led

to Mr Airy’s result, namely, that as the angle of incidence increases

from zero, the phase of vibration of light polarized in the plane of

incidence is accelerated relatively to that of light polarized in a

plane perpendicular to the plane of incidence.
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On a Fictitious Displacement of Fringes of

Interference.

The author remarked that the mode of determining the refrac-

tive index of a plate by means of the displacement of a system of

interference fringes, is subject to a theoretical error depending

upon the dispersive power of the plate. It is an extremely simple

consequence (as the author shewed) of the circumstance that the

bands are broader for the less refrangible colours, that the point of

symmetry, or nearest approach to symmetry, in the system of

displaced fringes, is situated in advance of the position calculated

in the ordinary way for rays of mean refrangibility. Since an

observer has no other ‘guide than the symmetry of the bands in

fixing on the centre of the system, he would thus be led to attri-

bute to the plate a refractive index which is slightly too great.

The author has illustrated this subject by the following experi-

ment. A set of fringes, produced in the ordinary way by a flat

prism, were viewed through an eye-piece, and bisected by its cross

wires. On viewing the whole through a prism of moderate angle,

held in front of the eye-piece with its edge parallel to the fringes,

an indistinct prismatic image of the wires was seen, together with

a distinct set of fringes which lay quite at one side of the cross

wires, the dispersion produced by the prism having thus occasioned

an apparent displacement of the fringes in the direction of the

general deviation.

In conclusion, the author suggested that it might have been

the fictitious displacement due to the dispersion accompanying*

eccentrical refraction, which caused some philosophers to assert

that the central band was black, whereas, according to theory,

it ought to be white. A fictitious displacement of half an

order, which might readily be produced by eccentrical refraction

through the lens or eye-piece with which the fringes were viewed,

would suffice to cause one of the two black bands of the first

order to be the band with respect to which the system was sym-

metrical.



362 PAPERS FROM THE REPORT

On Haidinger’s Brushes..

It is now several years since these brushes were discovered, and

they have since been observed by various philosophers, but the

author has not met with any observations made with a view of

investigating the action of different colours in producing them.

The author s attention was first called to the subject, by observing

that a^green tourmaline, which polarized light very imperfectly,

enabled him to see the brushes very distinctly, while he was un-

able to make them out with a brown tourmaline which trans-

mitted a much smaller quantity of unpolarized light. He then

tried the effect of combining various coloured glasses with a Nicol’s

prism. A red glass gave no trace of brushes. A brownish yellow

glass, which absorbed only a small quantity of light, rendered the

brushes very indistinct. A green glass enabled the author to see

the brushes rather more distinctly than they were seen in the

light of the clouds viewed without a coloured glass. A deep blue

glass gave brushes of remarkable intensity, notwithstanding the

large quantity of light absorbed. With the green and blue glasses,

the brushes were not coloured, but simply darker than the rest of

the field. .

To examine still further the office of the different colours in

producing the brushes seen with ordinary daylight, the author

used a telescope and prism mounted for shewing the fixed lines of

the spectrum. The sun’s light having been introduced into a

darkened room through a narrow slit, it was easy, by throwing the

eye-piece a little out of focus, to form a pure spectrum on a screen

of white paper, placed a foot or two in front of the eye-piece. On
examining this spectrum with a NicoFs prism, which was suddenly

turned round from time to. time through about a right angle, the

author found that the red and yellow did not present the least

trace of brushes. The brushes began to be visible in the green,

-about the fixed line E of Fraunhofer. They became more distinct

on passing into the blue, and were particularly strong about the

line E The author was able to trace them about as far as the

line Q
;
and when they were no longer visible, the cause appeared

to be merely the feebleness of the light, not the incapacity of the

greater part of the violet to produce them, With homogeneous
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light, the brushes, when they were formed at all, were simply

darker than the rest of the field, and, as might have been ex-

pected, did not appear of a different tint. In the blue, where the

brushes were most distinct, it appeared to the author that they

were somewhat shorter than usual. The contrast between the

more and less refrangible portions of the spectrum, in regard to

their capability of producing brushes, was most striking. The
most brilliant part of the spectrum gave no brushes

;
and. the in-

tensity of the orange and more refrangible portion of the red,

where not the slightest trace of brushes was discoverable, was

much greater than that of the more refrangible portion of the blue,

where the brushes were formed with great distinctness, although

cceteris paribus a considerable degree of intensity is favourable to

the exhibition of the brushes.

These observations account at once for the colour of the brushes

seen with ordinary daylight. Inasmuch as no brushes are seen

with the less refrangible colours, and the brushes seen with the

more refrangible colours consist in the removal of a certain

quantity of light, the tint of the brushes ought to be made up of

red, yellow, and perhaps a little green, the yellow predominating,

on account of its greater brightness in the solar spectrum. The

mixture would give an impure yellow, which is the colour ob-

served. The blueness of the side patches may be merely the effect

of contrast, or the cause may be more deeply seated. If the
.
total

illumination perceived be independent of the brushes, the light

withdrawn from the brushes must be found at their sides, which

would account, independently of contrast, both for the comparative

brightness and for the blue tint of the side patches.

The observations with homogeneous light account likewise for

a circumstance with which the author had been struck, namely,

that the brushes were not visible by candle-light, which is ex-

plained by
.
the comparative poverty of candle-light in the more

refrangible rays. The brushes ought to be rendered visible by

absorbing a certain quantity of the less refrangible rays, and ac-

cordingly the author found that a- blue glass, combined with a

Nicol’s prism, enabled him to see the brushes very distinctly when
looking at the flame of a candle. The specimen of blue glass-

which shewed them best, which was of a tolerably deep colour,

gave brushes which were decidedly red, and were only compara-

tively dark, so that the difference of tint between the brushes and
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side patches was far more conspicuous than the difference of in-

tensity. This is accounted for by the large quantity of extreme

red rays which such a glass transmits. That the same glass gave

red brushes with candle-light, and dark brushes with daylight, is

accounted for by the circumstance, that the ratio which the in-

tensity of the transmitted red rays bears to the intensity of the

transmitted blue rays is far larger with candle-light than with

daylight.

r
;
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Bessel’s functions, calculation of, for
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produced in, by a travelling load, 219
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light, explanation of, 24

Challis, Prof., explanation of difficulties

in the theory of sound discovered by,
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differential equation, discussion of a,
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travelling load, 178

diffraction, dynamical theory of, 243

diffraction of polarized light, experi-

ments on, 290

disturbance in an isotropic medium, due
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underpeculiar conditions, explained, 14
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ment of, 361
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on local gravity, 149
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of, on increasing the angle of internal

incidence, 80 ; explanation of the per-

fect blackness of the central spot of,
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Numerical calculation of a class of
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329

Pendulum results applicable to the de-
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polarized light, direction of vibrations in,
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tion, 317
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relating to the breaking of, discussed,

178

rarefaction a necessary accompaniment

of condensation in a sound-wave pro-

pagated from a centre, 83

reflexion, metallic, 360

refraction of light beyond the critical

angle, 57

reversion, application of the principle

of, to the demonstration of two laws

relating to the reflection of light, 90

ring, single bright, surrounding a dark

centre, in connexion with Newton’s

rings, 75

Secondary wave of light, law of disturb-

ance in, determined, 280
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and application of, 329

sound, on a difficulty in the theory of,
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theory of, 82

sound-wave, alteration of the type of,

when the motion is not small, 52

sphere, steady motion of, in a viscous

fluid, 10

Stanley, Capt., comparison of observa-

tions made by, on waves in open sea,

with theory, 239

Vortex motion, Helmholtz’s propositions

respecting, deduced from Cauchy’s in-

tegrals, 47

Wave length, determination of, corre-

sponding with any point of the spec-

trum, 176

waves, 221

Willis, Prof., discussion of an equation

relating to experiments by, 178
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